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cellpose is an anatomical segmentation algorithm written in Python 3 by Carsen Stringer and Marius Pachitariu. For
support, please open an issue.

We make pip installable releases of cellpose, here is the pypi. You can install it as pip install cellpose[gui].

You can try it out without installing at cellpose.org. Also check out these resources:

• twitter thread

• Marius’s talk on cellpose

• paper on biorxiv (see figure 1 below)
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https://github.com/MouseLand/cellpose/issues
https://pypi.org/project/cellpose/
http://www.cellpose.org
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https://www.youtube.com/watch?v=7y9d4VIKiS8
https://www.biorxiv.org/content/10.1101/2020.02.02.931238v1
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CHAPTER

ONE

INSTALLATION

For basic install instructions, look up the main github readme.

1.1 Built-in model directory

By default, the pretrained cellpose models are downloaded to $HOME/.cellpose/models/. This path on linux would
look like /home/USERNAME/.cellpose/, and on Windows, C:/Users/USERNAME/.cellpose/models/. These
models are downloaded the first time you try to use them, either on the command line, in the GUI or in a notebook.

If you’d like to download the models to a different directory, and are using the command line or the GUI, before you run
python -m cellpose ..., you will need to always set the environment variable CELLPOSE_LOCAL_MODELS_PATH
(thanks Chris Roat for implementing this!).

To set the environment variable in the command line/Anaconda prompt on windows run the following command mod-
ified for your path: set CELLPOSE_LOCAL_MODELS_PATH=C:/PATH_FOR_MODELS/. To set the environment variable
in the command line on linux, run export CELLPOSE_LOCAL_MODELS_PATH=/PATH_FOR_MODELS/.

To set this environment variable when running cellpose in a jupyter notebook, run this code at the beginning of your
notebook before you import cellpose:

import os
os.environ["CELLPOSE_LOCAL_MODELS_PATH"] = "/PATH_FOR_MODELS/"

1.2 Common issues

If you receive the error: Illegal instruction (core dumped), then likely mxnet does not recognize your MKL
version. Please uninstall and reinstall mxnet without mkl:

pip uninstall mxnet-mkl
pip uninstall mxnet
pip install mxnet==1.4.0

If you receive the error: No module named PyQt5.sip, then try uninstalling and reinstalling pyqt5

pip uninstall pyqt5 pyqt5-tools
pip install pyqt5 pyqt5-tools pyqt5.sip

If you have errors related to OpenMP and libiomp5, then try

:: conda install nomkl

3
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If you receive an error associated with matplotlib, try upgrading it:

pip install matplotlib --upgrade

If you receive the error: ImportError: _arpack DLL load failed, then try uninstalling and reinstalling scipy

pip uninstall scipy
pip install scipy

If you are having issues with the graphical interface, make sure you have python 3.7 and not python 3.8 installed.

If you are on Yosemite Mac OS or earlier, PyQt doesn’t work and you won’t be able to use the graphical interface for
cellpose. More recent versions of Mac OS are fine. The software has been heavily tested on Windows 10 and Ubuntu
18.04, and less well tested on Mac OS. Please post an issue if you have installation problems.

1.3 Dependencies

cellpose relies on the following excellent packages (which are automatically installed with conda/pip if missing):

• mxnet_mkl

• pyqtgraph

• PyQt5

• numpy (>=1.16.0)

• numba

• scipy

• scikit-image

• natsort

• matplotlib

4 Chapter 1. Installation
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CHAPTER

TWO

GUI

2.1 Starting the GUI

The quickest way to start is to open the GUI from a command line terminal. You might need to open an anaconda
prompt if you did not add anaconda to the path:

python -m cellpose

The first time cellpose runs it downloads the latest available trained model weights from the website.

You can drag and drop images (.tif, .png, .jpg, .gif) into the GUI and run Cellpose, and/or manually segment them.
When the GUI is processing, you will see the progress bar fill up and during this time you cannot click on anything in
the GUI. For more information about what the GUI is doing you can look at the terminal/prompt you opened the GUI
with. For example data, See [website](http://www.cellpose.org). For best accuracy and runtime performance, resize
images so cells are less than 100 pixels across.

For multi-channel, multi-Z tiff’s, the expected format is Z x channels x Ly x Lx.

2.2 Using the GUI

The GUI serves two main functions:

1. Running the segmentation algorithm.

2. Manually labelling data.

Main GUI mouse controls (works in all views):

• Pan = left-click + drag

• Zoom = scroll wheel (or +/= and - buttons)

• Full view = double left-click

• Select mask = left-click on mask

• Delete mask = Ctrl (or Command on Mac) + left-click

• Merge masks = Alt + left-click (will merge last two)

• Start draw mask = right-click

• End draw mask = right-click, or return to circle at beginning

Overlaps in masks are NOT allowed. If you draw a mask on top of another mask, it is cropped so that it doesn’t overlap
with the old mask. Masks in 2D should be single strokes (if single_stroke is checked).

5
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If you want to draw masks in 3D, then you can turn single_stroke option off and draw a stroke on each plane with the
cell and then press ENTER. 3D labelling will fill in unlabelled z-planes so that you do not have to as densely label.

Note: The GUI automatically saves after you draw a mask but NOT after segmentation and NOT after 3D mask
drawing (too slow). Save in the file menu or with Ctrl+S. The output file is in the same folder as the loaded image with
_seg.npy appended.

Keyboard shortcuts Description
CTRL+H help
=/+ // - zoom in // zoom out
CTRL+Z undo previously drawn mask/stroke
CTRL+0 clear all masks
CTRL+L load image (can alternatively drag and drop image)
CTRL+S SAVE MASKS IN IMAGE to _seg.npy file
CTRL+P load _seg.npy file (note: it will load automatically with image if it exists)
CTRL+M load masks file (must be same size as image with 0 for NO mask, and 1,2,3. . . for

masks)
CTRL+N load numpy stack (NOT WORKING ATM)
A/D or LEFT/RIGHT cycle through images in current directory
W/S or UP/DOWN change color (RGB/gray/red/green/blue)
PAGE-UP / PAGE-
DOWN

change to flows and cell prob views (if segmentation computed)

, / . increase / decrease brush size for drawing masks
X turn masks ON or OFF
Z toggle outlines ON or OFF
C cycle through labels for image type (saved to _seg.npy)

2.3 Segmentation options

SIZE: you can manually enter the approximate diameter for your cells, or press “calibrate” to let the model estimate it.
The size is represented by a disk at the bottom of the view window (can turn this disk off by unchecking “scale disk
on”).

use GPU: if you have installed the cuda version of mxnet, then you can activate this, but it won’t give huge speedups
when running single images in the GUI.

MODEL: there is a cytoplasm model and a nuclei model, choose what you want to segment

CHAN TO SEG: this is the channel in which the cytoplasm or nuclei exist

CHAN2 (OPT): if cytoplasm model is chosen, then choose the nuclear channel for this option

6 Chapter 2. GUI
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2.4 Contributing training data

We are very excited about receiving community contributions to the training data and re-training the cytoplasm model
to make it better. Please follow these guidelines:

1. Run cellpose on your data to see how well it does. Try varying the diameter, which can change results a little.

2. If there are relatively few mistakes, it won’t help much to contribute labelled data.

3. If there are consistent mistakes, your data is likely very different from anything in the training set, and you should
expect major improvements from contributing even just a few manually segmented images.

4. For images that you contribute, the cells should be at least 10 pixels in diameter, and there should be at least
several dozens of cells per image, ideally ~100. If your images are too small, consider combining multiple images
into a single big one and then manually segmenting that. If they are too big, consider splitting them into smaller
crops.

5. For the manual segmentation, please try to outline the boundaries of the cell, so that everything (membrane,
cytoplasm, nucleus) is inside the boundaries. Do not just outline the cytoplasm and exclude the membrane,
because that would be inconsistent with our own labelling and we wouldn’t be able to use that.

6. Do not use the results of the algorithm in any way to do contributed manual segmentations. This can reinforce a
vicious circle of mistakes, and compromise the dataset for further algorithm development.

If you are having problems with the nucleus model, please open an issue before contributing data. Nucleus images are
generally much less diverse, and we think the current training dataset already covers a very large set of modalities.

2.4. Contributing training data 7
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THREE

INPUTS

You can use tiffs or PNGs or JPEGs. We use the image loader from scikit-image. Single plane images can read into
data as nY x nX x channels or channels x nY x nX. Then the channels settings will take care of reshaping the input
appropriately for the network. Note the model also rescales the input for each channel so that 0 = 1st percentile of
image values and 1 = 99th percentile.

If you want to run multiple images in a directory, use the command line or a jupyter notebook to run cellpose.

3.1 3D segmentation

Tiffs with multiple planes and multiple channels are supported in the GUI (can drag-and-drop tiffs) and supported when
running in a notebook. Multiplane images should be of shape nplanes x channels x nY x nX or as nplanes x nY x nX.
You can test this by running in python

import skimage.io
data = skimage.io.imread('img.tif')
print(data.shape)

If drag-and-drop of the tiff into the GUI does not work correctly, then it’s likely that the shape of the tiff is incorrect. If
drag-and-drop works (you can see a tiff with multiple planes), then the GUI will automatically run 3D segmentation and
display it in the GUI. Watch the command line for progress. It is recommended to use a GPU to speed up processing.

When running cellpose in a notebook, set do_3D=True to enable 3D processing. You can give a list of 3D inputs, or a
single 3D/4D stack. When running on the command line, add the flag --do_3D (it will run all tiffs in the folder as 3D
tiffs if possible).

If the 3D segmentation is not working well and there is inhomogeneity in Z, try stitching masks in Z instead of running
do_3D=True. See details for this option here: stitch_threshold.

If drag-and-drop doesn’t work because of the shape of your tiff, you need to transpose the tiff and resave to use the GUI,
or use the napari plugin for cellpose, or run CLI/notebook and specify the channel_axis and/or z_axis parameters:

channel_axis and z_axis can be used to specify the axis (0-based) of the image which corresponds to
the image channels and to the z axis. For example an image with 2 channels of shape (1024,1024,2,105,1)
can be specified with channel_axis=2 and z_axis=3. If channel_axis=None cellpose will try to
automatically determine the channel axis by choosing the dimension with the minimal size after squeezing.
If z_axis=None cellpose will automatically select the first non-channel axis of the image to be the Z axis.
These parameters can be specified using the command line with --channel_axis or --z_axis or as
inputs to model.eval for the Cellpose or CellposeModel model.

9
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FOUR

SETTINGS

The important settings are described on this page. See the Cellpose class for all run options.

Here is an example of calling the Cellpose class and running a list of images for reference:

from cellpose import models
import skimage.io

# model_type='cyto' or model_type='nuclei'
model = models.Cellpose(gpu=False, model_type='cyto')

files = ['img0.tif', 'img1.tif']
imgs = [skimage.io.imread(f) for f in files]
masks, flows, styles, diams = model.eval(imgs, diameter=None, channels=[0,0],

threshold=0.4, do_3D=False)

You can make lists of channels/diameter for each image, or set the same channels/diameter for all images as shown in
the example above.

4.1 Channels

4.1.1 Cytoplasm model (‘cyto’)

The cytoplasm model in cellpose is trained on two-channel images, where the first channel is the channel to segment,
and the second channel is an optional nuclear channel. Here are the options for each: 1. 0=grayscale, 1=red, 2=green,
3=blue 2. 0=None (will set to zero), 1=red, 2=green, 3=blue

Set channels to a list with each of these elements, e.g. channels = [0,0] if you want to segment cells in grayscale
or for single channel images, or channels = [2,3] if you green cells with blue nuclei.

4.1.2 Nucleus model (‘nuclei’)

The nuclear model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and
the second channel is always set to an array of zeros. Therefore set the first channel as 0=grayscale, 1=red, 2=green,
3=blue; and set the second channel to zero, e.g. channels = [0,0] if you want to segment nuclei in grayscale or for
single channel images, or channels = [3,0] if you want to segment blue nuclei.

11
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4.1.3 Cytoplasm 2.0 model (‘cyto2’)

The cytoplasm 2.0 model in cellpose is trained on two-channel images, where the first channel is the channel to segment,
and the second channel is an optional nuclear channel, as the cytoplasm model.

In addition to the training data in our dataset, it was trained with user-submitted images.

4.2 Diameter

The cellpose models have been trained on images which were rescaled to all have the same diameter (30 pixels in the
case of the cyto model and 17 pixels in the case of the nuclei model). Therefore, cellpose needs a user-defined cell
diameter (in pixels) as input, or to estimate the object size of an image-by-image basis.

The automated estimation of the diameter is a two-step process using the style vector from the network, a 64-dimensional
summary of the input image. We trained a linear regression model to predict the size of objects from these style vectors
on the training data. On a new image the procedure is as follows.

1. Run the image through the cellpose network and obtain the style vector. Predict the size using the linear regression
model from the style vector.

2. Resize the image based on the predicted size and run cellpose again, and produce masks. Take the final estimated
size as the median diameter of the predicted masks.

For automated estimation set diameter = None. However, if this estimate is incorrect please set the diameter by
hand.

Changing the diameter will change the results that the algorithm outputs. When the diameter is set smaller than the
true size then cellpose may over-split cells. Similarly, if the diameter is set too big then cellpose may over-merge cells.

4.3 Resample

The cellpose network is run on your rescaled image – where the rescaling factor is determined by the diameter you input
(or determined automatically as above). For instance, if you have an image with 60 pixel diameter cells, the rescaling
factor is 30./60. = 0.5. After determining the flows (dX, dY, cellprob), the model runs the dynamics. The dynamics
can be run at the rescaled size (resample=False), or the dynamics can be run on the resampled, interpolated flows at
the true image size (resample=True). resample=True will create smoother masks when the cells are large but will
be slower in case; resample=False will find more masks when the cells are small but will be slower in this case. By
default in v0.5 resample=False, but in previous releases the default was resample=True.

The nuclear model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and
the second channel is always set to an array of zeros. Therefore set the first channel as 0=grayscale, 1=red, 2=green,
3=blue; and set the second channel to zero, e.g. channels = [0,0] if you want to segment nuclei in grayscale or for
single channel images, or channels = [3,0] if you want to segment blue nuclei.

If the nuclear model isn’t working well, try the cytoplasmic model.

12 Chapter 4. Settings
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4.4 Flow threshold (aka model fit threshold in GUI)

Note there is nothing keeping the neural network from predicting horizontal and vertical flows that do not correspond
to any real shapes at all. In practice, most predicted flows are consistent with real shapes, because the network was only
trained on image flows that are consistent with real shapes, but sometimes when the network is uncertain it may output
inconsistent flows. To check that the recovered shapes after the flow dynamics step are consistent with real masks, we
recompute the flow gradients for these putative predicted masks, and compute the mean squared error between them
and the flows predicted by the network.

The flow_threshold parameter is the maximum allowed error of the flows for each mask. The default is
flow_threshold=0.4. Increase this threshold if cellpose is not returning as many masks as you’d expect. Simi-
larly, decrease this threshold if cellpose is returning too many ill-shaped masks.

4.5 Mask threshold

The network predicts 3 outputs: flows in X, flows in Y, and cell “probability”. The predictions the network makes of
the probability are the inputs to a sigmoid centered at zero (1 / (1 + e^-x)), so they vary from around -6 to +6. The pixels
greater than the mask_threshold are used to run dynamics and determine masks. The default is mask_threshold=0.
0. Decrease this threshold if cellpose is not returning as many masks as you’d expect. Similarly, increase this threshold
if cellpose is returning too masks particularly from dim areas.

4.6 3D settings

Volumetric stacks do not always have the same sampling in XY as they do in Z. Therefore you can set an anisotropy
parameter to allow for differences in sampling, e.g. set to 2.0 if Z is sampled half as dense as X or Y.

There may be additional differences in YZ and XZ slices that make them unable to be used for 3D segmentation. I’d
recommend viewing the volume in those dimensions if the segmentation is failing. In those instances, you may want
to turn off 3D segmentation (do_3D=False) and run instead with stitch_threshold>0. Cellpose will create masks
in 2D on each XY slice and then stitch them across slices if the IoU between the mask on the current slice and the next
slice is greater than or equal to the stitch_threshold.

3D segmentation ignores the flow_threshold because we did not find that it helped to filter out false positives in our
test 3D cell volume. Instead, we found that setting min_size is a good way to remove false positives.

4.4. Flow threshold (aka model fit threshold in GUI) 13
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CHAPTER

FIVE

OUTPUTS

Internally, the network predicts 3 (or 4) outputs: (flows in Z), flows in Y, flows in X, and cellprob. The predictions the
network makes of cellprob are the inputs to a sigmoid centered at zero (1 / (1 + e^-x)), so they vary from around -6 to
+6.

5.1 _seg.npy output

*_seg.npy files have the following fields:

• filename : filename of image

• img : image with chosen channels (nchan x Ly x Lx) (if not multiplane)

• masks : masks (0 = NO masks; 1,2,. . . = mask labels)

• colors : colors for masks

• outlines : outlines of masks (0 = NO outline; 1,2,. . . = outline labels)

• chan_choose : channels that you chose in GUI (0=gray/none, 1=red, 2=green, 3=blue)

• ismanual : element k = whether or not mask k was manually drawn or computed by the cellpose algorithm

• flows [flows[0] is XY flow in RGB, flows[1] is the cell probability in range 0-255 instead of 0.0 to 1.0, flows[2]
is Z flow in range 0-255 (if it exists, otherwise zeros),] flows[3] is [dY, dX, cellprob] (or [dZ, dY, dX,
cellprob] for 3D), flows[4] is pixel destinations (for internal use)

• est_diam : estimated diameter (if run on command line)

• zdraw : for each mask, which planes were manually labelled (planes in between manually drawn have interpolated
masks)

Here is an example of loading in a *_seg.npy file and plotting masks and outlines

import numpy as np
from cellpose import plot
dat = np.load('_seg.npy', allow_pickle=True).item()

# plot image with masks overlaid
mask_RGB = plot.mask_overlay(dat['img'], dat['masks'],

colors=np.array(dat['colors']))

# plot image with outlines overlaid in red
outlines = plot.outlines_list(dat['masks'])
plt.imshow(dat['img'])

(continues on next page)

15
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(continued from previous page)

for o in outlines:
plt.plot(o[:,0], o[:,1], color='r')

If you run in a notebook and want to save to a *_seg.npy file, run

from cellpose import io
io.masks_flows_to_seg(images, masks, flows, diams, file_name, channels)

where each of these inputs is a list (as the output of model.eval is)

5.2 PNG output

You can save masks to PNG in the GUI.

To save masks (and other plots in PNG) using the command line, add the flag --save_png.

Or use the function below if running in a notebook

from cellpose import io
io.save_to_png(images, masks, flows, image_names)

5.3 ROI manager compatible output for ImageJ

You can save the outlines of masks in a text file that’s compatible with ImageJ ROI Manager in the GUI File menu.

To save using the command line, add the flag --save_png.

Or use the function below if running in a notebook

from cellpose import io, plot

# image_name is file name of image
# masks is numpy array of masks for image
base = os.path.splitext(image_name)[0]
outlines = utils.outlines_list(masks)
io.outlines_to_text(base, outlines)

To load this _cp_outlines.txt file into ImageJ, use the python script provided in cellpose:
imagej_roi_converter.py. Run this as a macro after opening your image file. It will ask you to input the
path to the _cp_outlines.txt file. Input that and the ROIs will appear in the ROI manager.

16 Chapter 5. Outputs
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5.4 Plotting functions

In plot.py there are functions, like show_segmentation:

from cellpose import plot

nimg = len(imgs)
for idx in range(nimg):

maski = masks[idx]
flowi = flows[idx][0]

fig = plt.figure(figsize=(12,5))
plot.show_segmentation(fig, imgs[idx], maski, flowi, channels=channels[idx])
plt.tight_layout()
plt.show()

5.4. Plotting functions 17
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SIX

TRAINING

At the beginning of training, cellpose computes the flow field representation for each mask image (dynamics.
labels_to_flows).

The cellpose pretrained models are trained using resized images so that the cells have the same median diameter across
all images. If you choose to use a pretrained model, then this fixed median diameter is used.

If you choose to train from scratch, you can set the median diameter you want to use for rescaling with the --diameter
flag, or set it to 0 to disable rescaling. We trained the cyto model with a diameter of 30 pixels and the nuclei model
with a diameter of 17 pixels.

When you rescale everything to 30. pixel diameter, if you have images with varying diameters you may also want to
learn a SizeModel that predicts the diameter from the styles that the network outputs. Add the flag --train_size and
this model will be trained and saved as an *.npy file.

The same channel settings apply for training models (see all Command line options).

Note Cellpose expects the labelled masks (0=no mask, 1,2. . .=masks) in a separate file, e.g:

wells_000.tif
wells_000_masks.tif

If you use the –img_filter option (--img_filter img in this case):

wells_000_img.tif
wells_000_masks.tif

Warning: The path given to --dir and --test_dir must be an absolute path.

Training-specific options

--test_dir TEST_DIR folder containing test data (optional)
--n_epochs N_EPOCHS number of epochs (default: 500)

To train on cytoplasmic images (green cyto and red nuclei) starting with a pretrained model from cellpose (cyto or
nuclei):

python -m cellpose --train --dir ~/images_cyto/train/ --test_dir ~/images_cyto/test/ --
→˓pretrained_model cyto --chan 2 --chan2 1

You can train from scratch as well:

python -m cellpose --train --dir ~/images_nuclei/train/ --pretrained_model None

19
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To train the cyto model from scratch using the same parameters we did, download the dataset and run

python -m cellpose --train --train_size --use_gpu --dir ~/cellpose_dataset/train/ --test_
→˓dir ~/cellpose_dataset/test/ --img_filter _img --pretrained_model None --chan 2 --
→˓chan2 1

You can also specify the full path to a pretrained model to use:

python -m cellpose --dir ~/images_cyto/test/ --pretrained_model ~/images_cyto/test/model/
→˓cellpose_35_0 --save_png
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CHAPTER

SEVEN

IN A NOTEBOOK

See settings for more information on run settings.

import numpy as np
import matplotlib.pyplot as plt
import skimage.io
from cellpose import models

# model_type='cyto' or model_type='nuclei'
model = models.Cellpose(model_type='cyto')

# list of files
# PUT PATH TO YOUR FILES HERE!
files = ['/media/carsen/DATA1/TIFFS/onechan.tif']

imgs = [skimage.io.imread(f) for f in files]
nimg = len(imgs)

# define CHANNELS to run segementation on
# grayscale=0, R=1, G=2, B=3
# channels = [cytoplasm, nucleus]
# if NUCLEUS channel does not exist, set the second channel to 0
channels = [[0,0]]
# IF ALL YOUR IMAGES ARE THE SAME TYPE, you can give a list with 2 elements
# channels = [0,0] # IF YOU HAVE GRAYSCALE
# channels = [2,3] # IF YOU HAVE G=cytoplasm and B=nucleus
# channels = [2,1] # IF YOU HAVE G=cytoplasm and R=nucleus

# if diameter is set to None, the size of the cells is estimated on a per image basis
# you can set the average cell `diameter` in pixels yourself (recommended)
# diameter can be a list or a single number for all images

masks, flows, styles, diams = model.eval(imgs, diameter=None, channels=channels)

See full notebook at run_cellpose.ipynb.
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CHAPTER

EIGHT

COMMAND LINE

8.1 Input settings

• dir: (string) directory of images

• img_filter: (string) (optional) ending of filenames (excluding extension) for processing

8.2 Run settings

These are the same settings, but set up for the command line, e.g. channels = [chan, chan2].

• chan: (int) 0 = grayscale; 1 = red; 2 = green; 3 = blue

• chan2: (int) (optional); 0 = None (will be set to zero); 1 = red; 2 = green; 3 = blue

• pretrained_model: (string) cyto = cellpose cytoplasm model; nuclei = cellpose nucleus model; can also spec-
ify absolute path to model file

• diameter: (float) average diameter of objects in image, if 0 cellpose will estimate for each image, default is 30

• use_gpu: (bool) run network on GPU

• save_png: FLAG save masks as png and outlines as text file for ImageJ

• save_tif: FLAG save masks as tif and outlines as text file for ImageJ

• fast_mode: FLAG make code run faster by turning off augmentations and 4 network averaging

• all_channels: FLAG run cellpose on all image channels (use for custom models ONLY)

• no_npy: FLAG turn off saving of _seg.npy file

• batch_size: (int, optional 8) batch size to run tiles of size 224 x 224

8.3 Command line examples

Run python -m cellpose and specify parameters as below. For instance to run on a folder with images where
cytoplasm is green and nucleus is blue and save the output as a png (using default diameter 30):

python -m cellpose --dir ~/images_cyto/test/ --pretrained_model cyto --chan 2 --chan2 3 -
→˓-save_png

You can specify the diameter for all the images or set to 0 if you want the algorithm to estimate it on an image by image
basis. Here is how to run on nuclear data (grayscale) where the diameter is automatically estimated:
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python -m cellpose --dir ~/images_nuclei/test/ --pretrained_model nuclei --diameter 0. --
→˓save_png

Warning: The path given to --dir must be an absolute path.

8.4 Options

You can run the help string and see all the options:

::

usage: __main__.py [-h] [–use_gpu] [–check_mkl] [–mkldnn] [–dir DIR] [–look_one_level_down] [–mxnet]

[–img_filter IMG_FILTER] [–channel_axis CHANNEL_AXIS] [–z_axis Z_AXIS]
[–chan CHAN] [–chan2 CHAN2] [–invert] [–all_channels] [–pretrained_model PRE-
TRAINED_MODEL] [–unet UNET] [–nclasses NCLASSES] [–omni] [–cluster]
[–fast_mode] [–resample] [–no_interp] [–do_3D] [–diameter DIAMETER] [–stitch_threshold
STITCH_THRESHOLD] [–flow_threshold FLOW_THRESHOLD] [–mask_threshold
MASK_THRESHOLD] [–anisotropy ANISOTROPY] [–diam_threshold DIAM_THRESHOLD]
[–exclude_on_edges] [–save_png] [–save_tif] [–no_npy] [–savedir SAVEDIR] [–dir_above]
[–in_folders] [–save_flows] [–save_outlines] [–save_ncolor] [–save_txt] [–train] [–train_size]
[–mask_filter MASK_FILTER] [–test_dir TEST_DIR] [–learning_rate LEARNING_RATE]
[–n_epochs N_EPOCHS] [–batch_size BATCH_SIZE] [–residual_on RESIDUAL_ON]
[–style_on STYLE_ON] [–concatenation CONCATENATION] [–save_every SAVE_EVERY]
[–save_each] [–verbose] [–testing]

cellpose parameters

optional arguments: -h, –help show this help message and exit –pretrained_model PRE-
TRAINED_MODEL

model to use

--unet UNET run standard unet instead of cellpose flow output

--omni Omnipose algorithm (disabled by default)

--cluster DBSCAN clustering. Reduces oversegmentation of thin features (dis-
abled by default).

--fast_mode make code run faster by turning off 4 network averaging

--resample run dynamics on full image (slower for images with large diameters)

--no_interp do not interpolate when running dynamics (was default)

--do_3D process images as 3D stacks of images (nplanes x nchan x Ly x Lx

--diameter DIAMETER cell diameter, if 0 cellpose will estimate for each image

--stitch_threshold STITCH_THRESHOLD compute masks in 2D then stitch together
masks with IoU>0.9 across planes

--anisotropy ANISOTROPY anisotropy of volume in 3D

--diam_threshold DIAM_THRESHOLD cell diameter threshold for upscaling before
mask rescontruction, default 12.
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--exclude_on_edges discard masks which touch edges of image

--verbose flag to output extra information (e.g. diameter metrics) for debugging
and fine-tuning parameters

--testing flag to suppress CLI user confirmation for saving output; for test
scripts

hardware arguments: –use_gpu use gpu if torch or mxnet with cuda installed –check_mkl check if mkl
working –mkldnn for mxnet, force MXNET_SUBGRAPH_BACKEND = “MKLDNN”

input image arguments: –dir DIR folder containing data to run or train on. –look_one_level_down run
processing on all subdirectories of current folder –mxnet use mxnet –img_filter IMG_FILTER

end string for images to run on

--channel_axis CHANNEL_AXIS axis of image which corresponds to image channels

--z_axis Z_AXIS axis of image which corresponds to Z dimension

--chan CHAN channel to segment; 0: GRAY, 1: RED, 2: GREEN, 3: BLUE. De-
fault: 0

--chan2 CHAN2 nuclear channel (if cyto, optional); 0: NONE, 1: RED, 2: GREEN, 3:
BLUE. Default: 0

--invert invert grayscale channel

--all_channels use all channels in image if using own model and images with special
channels

model arguments: –nclasses NCLASSES if running unet, choose 2 or 3; if training omni, choose 4; standard
Cellpose uses 3

algorithm arguments: –flow_threshold FLOW_THRESHOLD

flow error threshold, 0 turns off this optional QC step. Default: 0.4

--mask_threshold MASK_THRESHOLD mask threshold, default is 0, decrease to find
more and larger masks

output arguments: –save_png save masks as png and outlines as text file for ImageJ –save_tif save masks
as tif and outlines as text file for ImageJ –no_npy suppress saving of npy –savedir SAVEDIR folder to
which segmentation results will be saved (defaults to input image directory) –dir_above save output folders
adjacent to image folder instead of inside it (off by default) –in_folders flag to save output in folders (off
by default) –save_flows whether or not to save RGB images of flows when masks are saved (disabled by
default) –save_outlines whether or not to save RGB outline images when masks are saved (disabled by
default) –save_ncolor whether or not to save minimal “n-color” masks (disabled by default –save_txt flag
to enable txt outlines for ImageJ (disabled by default)

training arguments: –train train network using images in dir –train_size train size network at end of training
–mask_filter MASK_FILTER

end string for masks to run on. Default: _masks

--test_dir TEST_DIR folder containing test data (optional)

--learning_rate LEARNING_RATE learning rate. Default: 0.2

--n_epochs N_EPOCHS number of epochs. Default: 500

--batch_size BATCH_SIZE batch size. Default: 8

--residual_on RESIDUAL_ON use residual connections

--style_on STYLE_ON use style vector
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--concatenation CONCATENATION concatenate downsampled layers with upsampled
layers (off by default which means they are added)

--save_every SAVE_EVERY number of epochs to skip between saves. Default: 100

--save_each save the model under a different filename per –save_every epoch for
later comparsion
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CHAPTER

NINE

CELLPOSE API GUIDE

9.1 Cellpose class

class cellpose.models.Cellpose(gpu=False, model_type='cyto', net_avg=True, device=None, torch=True,
model_dir=None, omni=False)

main model which combines SizeModel and CellposeModel

Parameters

• gpu (bool (optional, default False)) – whether or not to use GPU, will check if
GPU available

• model_type (str (optional, default 'cyto')) – ‘cyto’=cytoplasm model; ‘nu-
clei’=nucleus model

• net_avg (bool (optional, default True)) – loads the 4 built-in networks and aver-
ages them if True, loads one network if False

• device (gpu device (optional, default None)) – where model is saved (e.g.
mx.gpu() or mx.cpu()), overrides gpu input, recommended if you want to use a specific GPU
(e.g. mx.gpu(4) or torch.cuda.device(4))

• torch (bool (optional, default True)) – run model using torch if available

eval(x, batch_size=8, channels=None, channel_axis=None, z_axis=None, invert=False, normalize=True,
diameter=30.0, do_3D=False, anisotropy=None, net_avg=True, augment=False, tile=True,
tile_overlap=0.1, resample=True, interp=True, cluster=False, flow_threshold=0.4,
mask_threshold=0.0, cellprob_threshold=None, dist_threshold=None, diam_threshold=12.0,
min_size=15, stitch_threshold=0.0, rescale=None, progress=None, omni=False, verbose=False,
transparency=False, model_loaded=False)

run cellpose and get masks

Parameters

• x (list or array of images) – can be list of 2D/3D images, or array of 2D/3D images,
or 4D image array

• batch_size (int (optional, default 8)) – number of 224x224 patches to run si-
multaneously on the GPU (can make smaller or bigger depending on GPU memory usage)

• channels (list (optional, default None)) – list of channels, either of length 2
or of length number of images by 2. First element of list is the channel to segment
(0=grayscale, 1=red, 2=green, 3=blue). Second element of list is the optional nuclear chan-
nel (0=none, 1=red, 2=green, 3=blue). For instance, to segment grayscale images, input
[0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To segment
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one grayscale image and one image with cells in green and nuclei in blue, input [[0,0],
[2,3]].

• channel_axis (int (optional, default None)) – if None, channels dimension is
attempted to be automatically determined

• z_axis (int (optional, default None)) – if None, z dimension is attempted to be
automatically determined

• invert (bool (optional, default False)) – invert image pixel intensity before
running network (if True, image is also normalized)

• normalize (bool (optional, default True)) – normalize data so 0.0=1st per-
centile and 1.0=99th percentile of image intensities in each channel

• diameter (float (optional, default 30.)) – if set to None, then diameter is auto-
matically estimated if size model is loaded

• do_3D (bool (optional, default False)) – set to True to run 3D segmentation on
4D image input

• anisotropy (float (optional, default None)) – for 3D segmentation, optional
rescaling factor (e.g. set to 2.0 if Z is sampled half as dense as X or Y)

• net_avg (bool (optional, default True)) – runs the 4 built-in networks and aver-
ages them if True, runs one network if False

• augment (bool (optional, default False)) – tiles image with overlapping tiles and
flips overlapped regions to augment

• tile (bool (optional, default True)) – tiles image to ensure GPU/CPU memory
usage limited (recommended)

• tile_overlap (float (optional, default 0.1)) – fraction of overlap of tiles when
computing flows

• resample (bool (optional, default True)) – run dynamics at original image size
(will be slower but create more accurate boundaries)

• interp (bool (optional, default True)) – interpolate during 2D dynamics (not
available in 3D) (in previous versions it was False)

• flow_threshold (float (optional, default 0.4)) – flow error threshold (all cells
with errors below threshold are kept) (not used for 3D)

• mask_threshold (float (optional, default 0.0)) – all pixels with value above
threshold kept for masks, decrease to find more and larger masks

• dist_threshold (float (optional, default None) DEPRECATED) – use
mask_threshold instead

• cellprob_threshold (float (optional, default None) DEPRECATED) – use
mask_threshold instead

• min_size (int (optional, default 15)) – minimum number of pixels per mask,
can turn off with -1

• stitch_threshold (float (optional, default 0.0)) – if stitch_threshold>0.0
and not do_3D and equal image sizes, masks are stitched in 3D to return volume seg-
mentation

• rescale (float (optional, default None)) – if diameter is set to None, and rescale
is not None, then rescale is used instead of diameter for resizing image
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• progress (pyqt progress bar (optional, default None)) – to return progress
bar status to GUI

• omni (bool (optional, default False)) – use omnipose mask recontruction fea-
tures

• calc_trace (bool (optional, default False)) – calculate pixel traces and return
as part of the flow

• verbose (bool (optional, default False)) – turn on additional output to logs for
debugging

• verbose – turn on additional output to logs for debugging

• transparency (bool (optional, default False)) – modulate flow opacity by
magnitude instead of brightness (can use flows on any color background)

• model_loaded (bool (optional, default False)) – internal variable for determin-
ing if model has been loaded, used in __main__.py

Returns

• masks (list of 2D arrays, or single 3D array (if do_3D=True)) – labelled image, where
0=no masks; 1,2,. . . =mask labels

• flows (list of lists 2D arrays, or list of 3D arrays (if do_3D=True)) – flows[k][0] = XY
flow in HSV 0-255 flows[k][1] = flows at each pixel flows[k][2] = scalar cell probability
(Cellpose) or distance transform (Omnipose) flows[k][3] = final pixel locations after Euler
integration flows[k][4] = boundary output (nonempty for Omnipose) flows[k][5] = pixel
traces (nonempty for calc_trace=True)

• styles (list of 1D arrays of length 256, or single 1D array (if do_3D=True)) – style vector
summarizing each image, also used to estimate size of objects in image

• diams (list of diameters, or float (if do_3D=True))

9.2 CellposeModel

class cellpose.models.CellposeModel(gpu=False, pretrained_model=False, model_type=None,
net_avg=True, torch=True, diam_mean=30.0, device=None,
residual_on=True, style_on=True, concatenation=False, nchan=2,
nclasses=3, omni=False)

Parameters

• gpu (bool (optional, default False)) – whether or not to save model to GPU, will
check if GPU available

• pretrained_model (str or list of strings (optional, default False)) –
path to pretrained cellpose model(s), if None or False, no model loaded

• model_type (str (optional, default None)) – ‘cyto’=cytoplasm model; ‘nu-
clei’=nucleus model; if None, pretrained_model used

• net_avg (bool (optional, default True)) – loads the 4 built-in networks and aver-
ages them if True, loads one network if False

• torch (bool (optional, default True)) – use torch nn rather than mxnet

• diam_mean (float (optional, default 27.)) – mean ‘diameter’, 27. is built in value
for ‘cyto’ model
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• device (mxnet device (optional, default None)) – where model is saved
(mx.gpu() or mx.cpu()), overrides gpu input, recommended if you want to use a specific
GPU (e.g. mx.gpu(4))

• model_dir (str (optional, default None)) – overwrite the built in model directory
where cellpose looks for models

• omni (use omnipose model (optional, default False)) –

eval(x, batch_size=8, channels=None, channel_axis=None, z_axis=None, normalize=True, invert=False,
rescale=None, diameter=None, do_3D=False, anisotropy=None, net_avg=True, augment=False,
tile=True, tile_overlap=0.1, resample=True, interp=True, cluster=False, flow_threshold=0.4,
mask_threshold=0.0, diam_threshold=12.0, cellprob_threshold=None, dist_threshold=None,
compute_masks=True, min_size=15, stitch_threshold=0.0, progress=None, omni=False,
calc_trace=False, verbose=False, transparency=False, loop_run=False, model_loaded=False)

segment list of images x, or 4D array - Z x nchan x Y x X

Parameters

• x (list or array of images) – can be list of 2D/3D/4D images, or array of 2D/3D/4D
images

• batch_size (int (optional, default 8)) – number of 224x224 patches to run si-
multaneously on the GPU (can make smaller or bigger depending on GPU memory usage)

• channels (list (optional, default None)) – list of channels, either of length 2
or of length number of images by 2. First element of list is the channel to segment
(0=grayscale, 1=red, 2=green, 3=blue). Second element of list is the optional nuclear chan-
nel (0=none, 1=red, 2=green, 3=blue). For instance, to segment grayscale images, input
[0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To segment
one grayscale image and one image with cells in green and nuclei in blue, input [[0,0],
[2,3]].

• channel_axis (int (optional, default None)) – if None, channels dimension is
attempted to be automatically determined

• z_axis (int (optional, default None)) – if None, z dimension is attempted to be
automatically determined

• normalize (bool (default, True)) – normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel

• invert (bool (optional, default False)) – invert image pixel intensity before
running network

• rescale (float (optional, default None)) – resize factor for each image, if None,
set to 1.0

• diameter (float (optional, default None)) – diameter for each image (only used
if rescale is None), if diameter is None, set to diam_mean

• do_3D (bool (optional, default False)) – set to True to run 3D segmentation on
4D image input

• anisotropy (float (optional, default None)) – for 3D segmentation, optional
rescaling factor (e.g. set to 2.0 if Z is sampled half as dense as X or Y)

• net_avg (bool (optional, default True)) – runs the 4 built-in networks and aver-
ages them if True, runs one network if False

• augment (bool (optional, default False)) – tiles image with overlapping tiles and
flips overlapped regions to augment
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• tile (bool (optional, default True)) – tiles image to ensure GPU/CPU memory
usage limited (recommended)

• tile_overlap (float (optional, default 0.1)) – fraction of overlap of tiles when
computing flows

• resample (bool (optional, default True)) – run dynamics at original image size
(will be slower but create more accurate boundaries)

• interp (bool (optional, default True)) – interpolate during 2D dynamics (not
available in 3D) (in previous versions it was False)

• flow_threshold (float (optional, default 0.4)) – flow error threshold (all cells
with errors below threshold are kept) (not used for 3D)

• mask_threshold (float (optional, default 0.0)) – all pixels with value above
threshold kept for masks, decrease to find more and larger masks

• dist_threshold (float (optional, default None) DEPRECATED) – use
mask_threshold instead

• cellprob_threshold (float (optional, default None) DEPRECATED) – use
mask_threshold instead

• compute_masks (bool (optional, default True)) – Whether or not to compute dy-
namics and return masks. This is set to False when retrieving the styles for the size model.

• min_size (int (optional, default 15)) – minimum number of pixels per mask,
can turn off with -1

• stitch_threshold (float (optional, default 0.0)) – if stitch_threshold>0.0
and not do_3D, masks are stitched in 3D to return volume segmentation

• progress (pyqt progress bar (optional, default None)) – to return progress
bar status to GUI

• omni (bool (optional, default False)) – use omnipose mask recontruction fea-
tures

• calc_trace (bool (optional, default False)) – calculate pixel traces and return
as part of the flow

• verbose (bool (optional, default False)) – turn on additional output to logs for
debugging

• transparency (bool (optional, default False)) – modulate flow opacity by
magnitude instead of brightness (can use flows on any color background)

• loop_run (bool (optional, default False)) – internal variable for determining if
model has been loaded, stops model loading in loop over images

• model_loaded (bool (optional, default False)) – internal variable for determin-
ing if model has been loaded, used in __main__.py

Returns

• masks (list of 2D arrays, or single 3D array (if do_3D=True)) – labelled image, where
0=no masks; 1,2,. . . =mask labels

• flows (list of lists 2D arrays, or list of 3D arrays (if do_3D=True)) – flows[k][0] = XY
flow in HSV 0-255 flows[k][1] = flows at each pixel flows[k][2] = scalar cell probability
(Cellpose) or distance transform (Omnipose) flows[k][3] = boundary output (nonempty for
Omnipose) flows[k][4] = final pixel locations after Euler integration flows[k][5] = pixel
traces (nonempty for calc_trace=True)
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• styles (list of 1D arrays of length 64, or single 1D array (if do_3D=True)) – style vector
summarizing each image, also used to estimate size of objects in image

loss_fn(lbl, y)
loss function between true labels lbl and prediction y

train(train_data, train_labels, train_files=None, test_data=None, test_labels=None, test_files=None,
channels=None, normalize=True, save_path=None, save_every=100, save_each=False,
learning_rate=0.2, n_epochs=500, momentum=0.9, SGD=True, weight_decay=1e-05, batch_size=8,
nimg_per_epoch=None, rescale=True, min_train_masks=5, omni=False, netstr=None)

train network with images train_data

Parameters

• train_data (list of arrays (2D or 3D)) – images for training

• train_labels (list of arrays (2D or 3D)) – labels for train_data, where 0=no
masks; 1,2,. . . =mask labels can include flows as additional images

• train_files (list of strings) – file names for images in train_data (to save flows
for future runs)

• test_data (list of arrays (2D or 3D)) – images for testing

• test_labels (list of arrays (2D or 3D)) – labels for test_data, where 0=no
masks; 1,2,. . . =mask labels; can include flows as additional images

• test_files (list of strings) – file names for images in test_data (to save flows for
future runs)

• channels (list of ints (default, None)) – channels to use for training

• normalize (bool (default, True)) – normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel

• save_path (string (default, None)) – where to save trained model, if None it is not
saved

• save_every (int (default, 100)) – save network every [save_every] epochs

• learning_rate (float or list/np.ndarray (default, 0.2)) – learning rate for
training, if list, must be same length as n_epochs

• n_epochs (int (default, 500)) – how many times to go through whole training set
during training

• weight_decay (float (default, 0.00001)) –

• SGD (bool (default, True)) – use SGD as optimization instead of RAdam

• batch_size (int (optional, default 8)) – number of 224x224 patches to run si-
multaneously on the GPU (can make smaller or bigger depending on GPU memory usage)

• nimg_per_epoch (int (optional, default None)) – minimum number of images
to train on per epoch, with a small training set (< 8 images) it may help to set to 8

• rescale (bool (default, True)) – whether or not to rescale images to diam_mean
during training, if True it assumes you will fit a size model after training or resize your
images accordingly, if False it will try to train the model to be scale-invariant (works worse)

• min_train_masks (int (default, 5)) – minimum number of masks an image must
have to use in training set
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• netstr (str (default, None)) – name of network, otherwise saved with name as
params + training start time

9.3 SizeModel

class cellpose.models.SizeModel(cp_model, device=None, pretrained_size=None, **kwargs)
linear regression model for determining the size of objects in image used to rescale before input to cp_model
uses styles from cp_model

Parameters

• cp_model (UnetModel or CellposeModel) – model from which to get styles

• device (mxnet device (optional, default mx.cpu())) – where cellpose model is
saved (mx.gpu() or mx.cpu())

• pretrained_size (str) – path to pretrained size model

• omni (bool) – whether or not to use distance-based size metrics corresponding to ‘omni’
model

eval(x, channels=None, channel_axis=None, normalize=True, invert=False, augment=False, tile=True,
batch_size=8, progress=None, interp=True, omni=False)

use images x to produce style or use style input to predict size of objects in image

Object size estimation is done in two steps: 1. use a linear regression model to predict size from style in
image 2. resize image to predicted size and run CellposeModel to get output masks.

Take the median object size of the predicted masks as the final predicted size.

Parameters

• x (list or array of images) – can be list of 2D/3D images, or array of 2D/3D images

• channels (list (optional, default None)) – list of channels, either of length 2
or of length number of images by 2. First element of list is the channel to segment
(0=grayscale, 1=red, 2=green, 3=blue). Second element of list is the optional nuclear chan-
nel (0=none, 1=red, 2=green, 3=blue). For instance, to segment grayscale images, input
[0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To segment
one grayscale image and one image with cells in green and nuclei in blue, input [[0,0],
[2,3]].

• channel_axis (int (optional, default None)) – if None, channels dimension is
attempted to be automatically determined

• normalize (bool (default, True)) – normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel

• invert (bool (optional, default False)) – invert image pixel intensity before
running network

• augment (bool (optional, default False)) – tiles image with overlapping tiles and
flips overlapped regions to augment

• tile (bool (optional, default True)) – tiles image to ensure GPU/CPU memory
usage limited (recommended)

• progress (pyqt progress bar (optional, default None)) – to return progress
bar status to GUI
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Returns

• diam (array, float) – final estimated diameters from images x or styles style after running
both steps

• diam_style (array, float) – estimated diameters from style alone

train(train_data, train_labels, test_data=None, test_labels=None, channels=None, normalize=True,
learning_rate=0.2, n_epochs=10, l2_regularization=1.0, batch_size=8, omni=False)

train size model with images train_data to estimate linear model from styles to diameters

Parameters

• train_data (list of arrays (2D or 3D)) – images for training

• train_labels (list of arrays (2D or 3D)) – labels for train_data, where 0=no
masks; 1,2,. . . =mask labels can include flows as additional images

• channels (list of ints (default, None)) – channels to use for training

• normalize (bool (default, True)) – normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel

• n_epochs (int (default, 10)) – how many times to go through whole training set
(taking random patches) for styles for diameter estimation

• l2_regularization (float (default, 1.0)) – regularize linear model from styles
to diameters

• batch_size (int (optional, default 8)) – number of 224x224 patches to run si-
multaneously on the GPU (can make smaller or bigger depending on GPU memory usage)

9.4 Metrics

cellpose.metrics.aggregated_jaccard_index(masks_true, masks_pred)
AJI = intersection of all matched masks / union of all masks

Parameters

• masks_true (list of ND-arrays (int) or ND-array (int)) – where 0=NO
masks; 1,2. . . are mask labels

• masks_pred (list of ND-arrays (int) or ND-array (int)) – ND-array (int)
where 0=NO masks; 1,2. . . are mask labels

Returns aji

Return type aggregated jaccard index for each set of masks

cellpose.metrics.average_precision(masks_true, masks_pred, threshold=[0.5, 0.75, 0.9])
average precision estimation: AP = TP / (TP + FP + FN)

This function is based heavily on the fast stardist matching functions (https://github.com/mpicbg-csbd/stardist/
blob/master/stardist/matching.py)

Parameters

• masks_true (list of ND-arrays (int) or ND-array (int)) – where 0=NO
masks; 1,2. . . are mask labels
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• masks_pred (list of ND-arrays (int) or ND-array (int)) – ND-array (int)
where 0=NO masks; 1,2. . . are mask labels

Returns

• ap (array [len(masks_true) x len(threshold)]) – average precision at thresholds

• tp (array [len(masks_true) x len(threshold)]) – number of true positives at thresholds

• fp (array [len(masks_true) x len(threshold)]) – number of false positives at thresholds

• fn (array [len(masks_true) x len(threshold)]) – number of false negatives at thresholds

cellpose.metrics.boundary_scores(masks_true, masks_pred, scales)
boundary precision / recall / Fscore

cellpose.metrics.flow_error(maski, dP_net, use_gpu=False, device=None)
error in flows from predicted masks vs flows predicted by network run on image

This function serves to benchmark the quality of masks, it works as follows 1. The predicted masks are used to
create a flow diagram 2. The mask-flows are compared to the flows that the network predicted

If there is a discrepancy between the flows, it suggests that the mask is incorrect. Masks with flow_errors greater
than 0.4 are discarded by default. Setting can be changed in Cellpose.eval or CellposeModel.eval.

Parameters

• maski (ND-array (int)) – masks produced from running dynamics on dP_net, where
0=NO masks; 1,2. . . are mask labels

• dP_net (ND-array (float)) – ND flows where dP_net.shape[1:] = maski.shape

Returns

• flow_errors (float array with length maski.max()) – mean squared error between predicted
flows and flows from masks

• dP_masks (ND-array (float)) – ND flows produced from the predicted masks

cellpose.metrics.mask_ious(masks_true, masks_pred)
return best-matched masks

9.5 Flows to masks

cellpose.dynamics.compute_masks(dP, cellprob, bd=None, p=None, inds=None, niter=200,
mask_threshold=0.0, diam_threshold=12.0, flow_threshold=0.4,
interp=True, do_3D=False, min_size=15, resize=None, verbose=False,
use_gpu=False, device=None, nclasses=3)

compute masks using dynamics from dP, cellprob, and boundary

cellpose.dynamics.follow_flows(dP, mask=None, inds=None, niter=200, interp=True, use_gpu=True,
device=None, omni=False, calc_trace=False)

define pixels and run dynamics to recover masks in 2D

Pixels are meshgrid. Only pixels with non-zero cell-probability are used (as defined by inds)

Parameters

• dP (float32, 3D or 4D array) – flows [axis x Ly x Lx] or [axis x Lz x Ly x Lx]
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• mask ((optional, default None)) – pixel mask to seed masks. Useful when flows have
low magnitudes.

• niter (int (optional, default 200)) – number of iterations of dynamics to run

• interp (bool (optional, default True)) – interpolate during 2D dynamics (not
available in 3D) (in previous versions + paper it was False)

• use_gpu (bool (optional, default False)) – use GPU to run interpolated dynamics
(faster than CPU)

Returns p – final locations of each pixel after dynamics

Return type float32, 3D array

cellpose.dynamics.get_masks(p, iscell=None, rpad=20, flows=None, threshold=0.4, use_gpu=False,
device=None)

create masks using pixel convergence after running dynamics

Makes a histogram of final pixel locations p, initializes masks at peaks of histogram and extends the masks from
the peaks so that they include all pixels with more than 2 final pixels p. Discards masks with flow errors greater
than the threshold. :param p: final locations of each pixel after dynamics,

size [axis x Ly x Lx] or [axis x Lz x Ly x Lx].

Parameters

• iscell (bool, 2D or 3D array) – if iscell is not None, set pixels that are iscell False to
stay in their original location.

• rpad (int (optional, default 20)) – histogram edge padding

• threshold (float (optional, default 0.4)) – masks with flow error greater than
threshold are discarded (if flows is not None)

• flows (float, 3D or 4D array (optional, default None)) – flows [axis x Ly x
Lx] or [axis x Lz x Ly x Lx]. If flows is not None, then masks with inconsistent flows are
removed using remove_bad_flow_masks.

Returns M0 – masks with inconsistent flow masks removed, 0=NO masks; 1,2,. . . =mask labels, size
[Ly x Lx] or [Lz x Ly x Lx]

Return type int, 2D or 3D array

cellpose.dynamics.labels_to_flows(labels, files=None, use_gpu=False, device=None, redo_flows=False)
convert labels (list of masks or flows) to flows for training model

if files is not None, flows are saved to files to be reused

Parameters labels (list of ND-arrays) – labels[k] can be 2D or 3D, if [3 x Ly x Lx] then it
is assumed that flows were precomputed. Otherwise labels[k][0] or labels[k] (if 2D) is used to
create flows and cell probabilities.

Returns flows – flows[k][0] is labels[k], flows[k][1] is cell distance transform, flows[k][2] is Y flow,
flows[k][3] is X flow, and flows[k][4] is heat distribution

Return type list of [4 x Ly x Lx] arrays

cellpose.dynamics.map_coordinates(I, yc, xc, Y)
bilinear interpolation of image ‘I’ in-place with ycoordinates yc and xcoordinates xc to Y

Parameters

• I (C x Ly x Lx) –
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• yc (ni) – new y coordinates

• xc (ni) – new x coordinates

• Y (C x ni) – I sampled at (yc,xc)

cellpose.dynamics.masks_to_flows(masks, use_gpu=False, device=None)
convert masks to flows using diffusion from center pixel

Center of masks where diffusion starts is defined to be the closest pixel to the median of all pixels that is inside
the mask. Result of diffusion is converted into flows by computing the gradients of the diffusion density map.

Parameters masks (int, 2D or 3D array) – labelled masks 0=NO masks; 1,2,. . . =mask labels

Returns

• mu (float, 3D or 4D array) – flows in Y = mu[-2], flows in X = mu[-1]. if masks are 3D,
flows in Z = mu[0].

• mu_c (float, 2D or 3D array) – for each pixel, the distance to the center of the mask in which
it resides

cellpose.dynamics.masks_to_flows_cpu(masks, device=None)
convert masks to flows using diffusion from center pixel Center of masks where diffusion starts is defined to be
the closest pixel to the median of all pixels that is inside the mask. Result of diffusion is converted into flows by
computing the gradients of the diffusion density map. :param masks: labelled masks 0=NO masks; 1,2,. . . =mask
labels :type masks: int, 2D array

Returns

• mu (float, 3D array) – flows in Y = mu[-2], flows in X = mu[-1]. if masks are 3D, flows in
Z = mu[0].

• mu_c (float, 2D array) – for each pixel, the distance to the center of the mask in which it
resides

cellpose.dynamics.masks_to_flows_gpu(masks, device=None)
convert masks to flows using diffusion from center pixel Center of masks where diffusion starts is defined using
COM :param masks: labelled masks 0=NO masks; 1,2,. . . =mask labels :type masks: int, 2D or 3D array

Returns

• mu (float, 3D or 4D array) – flows in Y = mu[-2], flows in X = mu[-1]. if masks are 3D,
flows in Z = mu[0].

• mu_c (float, 2D or 3D array) – for each pixel, the distance to the center of the mask in which
it resides

cellpose.dynamics.remove_bad_flow_masks(masks, flows, threshold=0.4, use_gpu=False, device=None)
remove masks which have inconsistent flows

Uses metrics.flow_error to compute flows from predicted masks and compare flows to predicted flows from
network. Discards masks with flow errors greater than the threshold.

Parameters

• masks (int, 2D or 3D array) – labelled masks, 0=NO masks; 1,2,. . . =mask labels, size
[Ly x Lx] or [Lz x Ly x Lx]

• flows (float, 3D or 4D array) – flows [axis x Ly x Lx] or [axis x Lz x Ly x Lx]

• threshold (float (optional, default 0.4)) – masks with flow error greater than
threshold are discarded.
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Returns masks – masks with inconsistent flow masks removed, 0=NO masks; 1,2,. . . =mask labels,
size [Ly x Lx] or [Lz x Ly x Lx]

Return type int, 2D or 3D array

cellpose.dynamics.step_factor(t)
Euler integration suppression factor.

cellpose.dynamics.steps2D(p, dP, inds, niter, omni=False, calc_trace=False)
run dynamics of pixels to recover masks in 2D

Euler integration of dynamics dP for niter steps

Parameters

• p (float32, 3D array) – pixel locations [axis x Ly x Lx] (start at initial meshgrid)

• dP (float32, 3D array) – flows [axis x Ly x Lx]

• inds (int32, 2D array) – non-zero pixels to run dynamics on [npixels x 2]

• niter (int32) – number of iterations of dynamics to run

Returns p – final locations of each pixel after dynamics

Return type float32, 3D array

cellpose.dynamics.steps3D(p, dP, inds, niter)
run dynamics of pixels to recover masks in 3D

Euler integration of dynamics dP for niter steps

Parameters

• p (float32, 4D array) – pixel locations [axis x Lz x Ly x Lx] (start at initial meshgrid)

• dP (float32, 4D array) – flows [axis x Lz x Ly x Lx]

• inds (int32, 2D array) – non-zero pixels to run dynamics on [npixels x 3]

• niter (int32) – number of iterations of dynamics to run

Returns p – final locations of each pixel after dynamics

Return type float32, 4D array

9.6 Image transforms

cellpose.transforms.average_tiles(y, ysub, xsub, Ly, Lx)
average results of network over tiles

Parameters

• y (float, [ntiles x nclasses x bsize x bsize]) – output of cellpose network for
each tile

• ysub (list) – list of arrays with start and end of tiles in Y of length ntiles

• xsub (list) – list of arrays with start and end of tiles in X of length ntiles

• Ly (int) – size of pre-tiled image in Y (may be larger than original image if image size is
less than bsize)
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• Lx (int) – size of pre-tiled image in X (may be larger than original image if image size is
less than bsize)

Returns yf – network output averaged over tiles

Return type float32, [nclasses x Ly x Lx]

cellpose.transforms.convert_image(x, channels, channel_axis=None, z_axis=None, do_3D=False,
normalize=True, invert=False, nchan=2, omni=False)

return image with z first, channels last and normalized intensities

cellpose.transforms.make_tiles(imgi, bsize=224, augment=False, tile_overlap=0.1)
make tiles of image to run at test-time

if augmented, tiles are flipped and tile_overlap=2.

• original

• flipped vertically

• flipped horizontally

• flipped vertically and horizontally

Parameters

• imgi (float32) – array that’s nchan x Ly x Lx

• bsize (float (optional, default 224)) – size of tiles

• augment (bool (optional, default False)) – flip tiles and set tile_overlap=2.

• tile_overlap (float (optional, default 0.1)) – fraction of overlap of tiles

Returns

• IMG (float32) – array that’s ntiles x nchan x bsize x bsize

• ysub (list) – list of arrays with start and end of tiles in Y of length ntiles

• xsub (list) – list of arrays with start and end of tiles in X of length ntiles

cellpose.transforms.move_axis(img, m_axis=- 1, first=True)
move axis m_axis to first or last position

cellpose.transforms.move_min_dim(img, force=False)
move minimum dimension last as channels if < 10, or force==True

cellpose.transforms.normalize99(Y, lower=0.01, upper=99.99, omni=False)
normalize image so 0.0 is 0.01st percentile and 1.0 is 99.99th percentile

cellpose.transforms.normalize_img(img, axis=- 1, invert=False, omni=False)
normalize each channel of the image so that so that 0.0=1st percentile and 1.0=99th percentile of image intensities

optional inversion

Parameters

• img (ND-array (at least 3 dimensions)) –

• axis (channel axis to loop over for normalization) –

Returns img – normalized image of same size

Return type ND-array, float32

9.6. Image transforms 39



cellpose, Release 0.7.2

cellpose.transforms.original_random_rotate_and_resize(X, Y=None, scale_range=1.0, xy=(224, 224),
do_flip=True, rescale=None, unet=False)

augmentation by random rotation and resizing X and Y are lists or arrays of length nimg, with dims channels x
Ly x Lx (channels optional) :param X: list of image arrays of size [nchan x Ly x Lx] or [Ly x Lx] :type X: LIST
of ND-arrays, float :param Y: list of image labels of size [nlabels x Ly x Lx] or [Ly x Lx]. The 1st channel

of Y is always nearest-neighbor interpolated (assumed to be masks or 0-1 representation). If
Y.shape[0]==3 and not unet, then the labels are assumed to be [cell probability, Y flow, X flow].
If unet, second channel is dist_to_bound.

Parameters

• scale_range (float (optional, default 1.0)) – Range of resizing of images for
augmentation. Images are resized by (1-scale_range/2) + scale_range * np.random.rand()

• xy (tuple, int (optional, default (224,224))) – size of transformed images to
return

• do_flip (bool (optional, default True)) – whether or not to flip images horizon-
tally

• rescale (array, float (optional, default None)) – how much to resize images
by before performing augmentations

• unet (bool (optional, default False)) –

Returns

• imgi (ND-array, float) – transformed images in array [nimg x nchan x xy[0] x xy[1]]

• lbl (ND-array, float) – transformed labels in array [nimg x nchan x xy[0] x xy[1]]

• scale (array, float) – amount each image was resized by

cellpose.transforms.pad_image_ND(img0, div=16, extra=1)
pad image for test-time so that its dimensions are a multiple of 16 (2D or 3D)

Parameters

• img0 (ND-array) – image of size [nchan (x Lz) x Ly x Lx]

• div (int (optional, default 16)) –

Returns

• I (ND-array) – padded image

• ysub (array, int) – yrange of pixels in I corresponding to img0

• xsub (array, int) – xrange of pixels in I corresponding to img0

cellpose.transforms.random_rotate_and_resize(X, Y=None, scale_range=1.0, gamma_range=0.5,
xy=(224, 224), do_flip=True, rescale=None, unet=False,
inds=None, depth=0, omni=False)

augmentation by random rotation and resizing

X and Y are lists or arrays of length nimg, with dims channels x Ly x Lx (channels optional)

Parameters

• X (LIST of ND-arrays, float) – list of image arrays of size [nchan x Ly x Lx] or [Ly x
Lx]
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• Y (LIST of ND-arrays, float (optional, default None)) – list of image labels
of size [nlabels x Ly x Lx] or [Ly x Lx]. The 1st channel of Y is always nearest-neighbor
interpolated (assumed to be masks or 0-1 representation). If Y.shape[0]==3 and not unet,
then the labels are assumed to be [cell probability, Y flow, X flow]. If unet, second channel
is dist_to_bound.

• scale_range (float (optional, default 1.0)) – Range of resizing of images for
augmentation. Images are resized by (1-scale_range/2) + scale_range * np.random.rand()

• gamma_range (float (optional, default 0.5)) – Images are gamma-adjusted
im**gamma for gamma in (1-gamma_range,1+gamma_range)

• xy (tuple, int (optional, default (224,224))) – size of transformed images to
return

• do_flip (bool (optional, default True)) – whether or not to flip images horizon-
tally

• rescale (array, float (optional, default None)) – how much to resize images
by before performing augmentations

• unet (bool (optional, default False)) –

Returns

• imgi (ND-array, float) – transformed images in array [nimg x nchan x xy[0] x xy[1]]

• lbl (ND-array, float) – transformed labels in array [nimg x nchan x xy[0] x xy[1]]

• scale (array, float) – amount each image was resized by

cellpose.transforms.reshape(data, channels=[0, 0], chan_first=False)
reshape data using channels

Parameters

• data (numpy array that's (Z x ) Ly x Lx x nchan) – if data.ndim==8 and
data.shape[0]<8, assumed to be nchan x Ly x Lx

• channels (list of int of length 2 (optional, default [0,0])) – First ele-
ment of list is the channel to segment (0=grayscale, 1=red, 2=green, 3=blue). Second ele-
ment of list is the optional nuclear channel (0=none, 1=red, 2=green, 3=blue). For instance,
to train on grayscale images, input [0,0]. To train on images with cells in green and nuclei in
blue, input [2,3].

• invert (bool) – invert intensities

Returns data

Return type numpy array that’s (Z x ) Ly x Lx x nchan (if chan_first==False)

cellpose.transforms.reshape_and_normalize_data(train_data, test_data=None, channels=None,
normalize=True, omni=False)

inputs converted to correct shapes for training and rescaled so that 0.0=1st percentile and 1.0=99th percentile of
image intensities in each channel

Parameters

• train_data (list of ND-arrays, float) – list of training images of size [Ly x Lx],
[nchan x Ly x Lx], or [Ly x Lx x nchan]

• test_data (list of ND-arrays, float (optional, default None)) – list of test-
ing images of size [Ly x Lx], [nchan x Ly x Lx], or [Ly x Lx x nchan]
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• channels (list of int of length 2 (optional, default None)) – First element
of list is the channel to segment (0=grayscale, 1=red, 2=green, 3=blue). Second element of
list is the optional nuclear channel (0=none, 1=red, 2=green, 3=blue). For instance, to train
on grayscale images, input [0,0]. To train on images with cells in green and nuclei in blue,
input [2,3].

• normalize (bool (optional, True)) – normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel

Returns

• train_data (list of ND-arrays, float) – list of training images of size [2 x Ly x Lx]

• test_data (list of ND-arrays, float (optional, default None)) – list of testing images of size [2
x Ly x Lx]

• run_test (bool) – whether or not test_data was correct size and is useable during training

cellpose.transforms.reshape_train_test(train_data, train_labels, test_data, test_labels, channels,
normalize=True, omni=False)

check sizes and reshape train and test data for training

cellpose.transforms.resize_image(img0, Ly=None, Lx=None, rsz=None, interpolation=1,
no_channels=False)

resize image for computing flows / unresize for computing dynamics

Parameters

• img0 (ND-array) – image of size [Y x X x nchan] or [Lz x Y x X x nchan] or [Lz x Y x X]

• Ly (int, optional) –

• Lx (int, optional) –

• rsz (float, optional) – resize coefficient(s) for image; if Ly is None then rsz is used

• interpolation (cv2 interp method (optional, default cv2.INTER_LINEAR))
–

Returns imgs – image of size [Ly x Lx x nchan] or [Lz x Ly x Lx x nchan]

Return type ND-array

cellpose.transforms.unaugment_tiles(y, unet=False)
reverse test-time augmentations for averaging

Parameters

• y (float32) – array that’s ntiles_y x ntiles_x x chan x Ly x Lx where chan = (dY, dX, cell
prob)

• unet (bool (optional, False)) – whether or not unet output or cellpose output

Returns y

Return type float32
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9.7 Plot functions

cellpose.plot.disk(med, r, Ly, Lx)
returns pixels of disk with radius r and center med

cellpose.plot.dx_to_circ(dP, transparency=False, mask=None)
dP is 2 x Y x X => ‘optic’ flow representation

Parameters

• dP (2xLyxLx array) – Flow field components [dy,dx]

• transparency (bool, default False) – magnitude of flow controls opacity, not light-
ness (clear background)

• mask (2D array) – Multiplies each RGB component to suppress noise

cellpose.plot.image_to_rgb(img0, channels=[0, 0], omni=False)
image is 2 x Ly x Lx or Ly x Lx x 2 - change to RGB Ly x Lx x 3

cellpose.plot.interesting_patch(mask, bsize=130)
get patch of size bsize x bsize with most masks

cellpose.plot.mask_overlay(img, masks, colors=None, omni=False)
overlay masks on image (set image to grayscale)

Parameters

• img (int or float, 2D or 3D array) – img is of size [Ly x Lx (x nchan)]

• masks (int, 2D array) – masks where 0=NO masks; 1,2,. . . =mask labels

• colors (int, 2D array (optional, default None)) – size [nmasks x 3], each entry
is a color in 0-255 range

Returns RGB – array of masks overlaid on grayscale image

Return type uint8, 3D array

cellpose.plot.mask_rgb(masks, colors=None)
masks in random rgb colors

Parameters

• masks (int, 2D array) – masks where 0=NO masks; 1,2,. . . =mask labels

• colors (int, 2D array (optional, default None)) – size [nmasks x 3], each entry
is a color in 0-255 range

Returns RGB – array of masks overlaid on grayscale image

Return type uint8, 3D array

cellpose.plot.outline_view(img0, maski, color=[1, 0, 0], mode='inner')
Generates a red outline overlay onto image.

cellpose.plot.show_segmentation(fig, img, maski, flowi, channels=[0, 0], file_name=None, omni=False,
seg_norm=False, bg_color=None)

plot segmentation results (like on website)

Can save each panel of figure with file_name option. Use channels option if img input is not an RGB image with
3 channels.
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Parameters

• fig (matplotlib.pyplot.figure) – figure in which to make plot

• img (2D or 3D array) – image input into cellpose

• maski (int, 2D array) – for image k, masks[k] output from Cellpose.eval, where 0=NO
masks; 1,2,. . . =mask labels

• flowi (int, 2D array) – for image k, flows[k][0] output from Cellpose.eval (RGB of
flows)

• channels (list of int (optional, default [0,0])) – channels used to run Cell-
pose, no need to use if image is RGB

• file_name (str (optional, default None)) – file name of image, if file_name is not
None, figure panels are saved

• omni (bool (optional, default False)) – use omni version of normalize99, im-
age_to_rgb

• seg_norm (bool (optional, default False)) – improve cell visibility under labels

• bg_color (float (Optional, default none)) – background color to draw behind
flow (visible if flow transparency is on)
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average_tiles() (in module cellpose.transforms), 38
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F
flow_error() (in module cellpose.metrics), 35
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G
get_masks() (in module cellpose.dynamics), 36
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image_to_rgb() (in module cellpose.plot), 43

interesting_patch() (in module cellpose.plot), 43

L
labels_to_flows() (in module cellpose.dynamics), 36
loss_fn() (cellpose.models.CellposeModel method), 32

M
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map_coordinates() (in module cellpose.dynamics), 36
mask_ious() (in module cellpose.metrics), 35
mask_overlay() (in module cellpose.plot), 43
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cellpose.metrics, 34
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cellpose.transforms, 38

move_axis() (in module cellpose.transforms), 39
move_min_dim() (in module cellpose.transforms), 39

N
normalize99() (in module cellpose.transforms), 39
normalize_img() (in module cellpose.transforms), 39

O
original_random_rotate_and_resize() (in module

cellpose.transforms), 39
outline_view() (in module cellpose.plot), 43

P
pad_image_ND() (in module cellpose.transforms), 40

R
random_rotate_and_resize() (in module cell-

pose.transforms), 40
remove_bad_flow_masks() (in module cell-

pose.dynamics), 37
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reshape() (in module cellpose.transforms), 41
reshape_and_normalize_data() (in module cell-

pose.transforms), 41
reshape_train_test() (in module cell-

pose.transforms), 42
resize_image() (in module cellpose.transforms), 42

S
show_segmentation() (in module cellpose.plot), 43
SizeModel (class in cellpose.models), 33
step_factor() (in module cellpose.dynamics), 38
steps2D() (in module cellpose.dynamics), 38
steps3D() (in module cellpose.dynamics), 38

T
train() (cellpose.models.CellposeModel method), 32
train() (cellpose.models.SizeModel method), 34

U
unaugment_tiles() (in module cellpose.transforms),
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