
cellpose
Release 3.0.7-19-g0ce3653

Carsen Stringer & Marius Pachitariu

Apr 09, 2024

BASICS:

1 Installation 3
1.1 Built-in model directory . 3
1.2 M1 Mac installation . 3
1.3 AMD GPU ROCm installation . 4
1.4 Common issues . 4
1.5 Dependencies . 5

2 GUI 7
2.1 Starting the GUI . 7
2.2 Using the GUI . 8
2.3 Drawing masks . 9
2.4 Bulk Mask Deletion . 9
2.5 Segmentation options . 9
2.6 Training your own cellpose model . 10
2.7 Contributing training data . 10
2.8 Keyboard shortcuts . 11

3 Inputs 13
3.1 3D segmentation . 13

4 Settings 15
4.1 Channels . 15
4.2 Diameter . 16
4.3 Resample . 16
4.4 Flow threshold . 16
4.5 Cellprob threshold . 17
4.6 Number of iterations niter . 17
4.7 3D settings . 17

5 Outputs 19
5.1 in a notebook . 19
5.2 _seg.npy output . 19
5.3 PNG output . 20
5.4 Native ImageJ ROI archive output . 20
5.5 (Legacy ImageJ Interface) ROI manager compatible output for ImageJ 21
5.6 Plotting functions . 21

6 Models 23
6.1 Full built-in models . 23

6.1.1 Cytoplasm model ('cyto3', 'cyto2', 'cyto') . 23
6.1.2 Nucleus model (‘nuclei’) . 24

i

6.2 Other built-in models . 24
6.3 User-trained models . 24

7 Image Restoration 25
7.1 DenoiseModel . 25
7.2 CellposeDenoiseModel . 26
7.3 Command line usage . 26

8 Training 27

9 OpenVINO 31

10 FAQ 33

11 In a notebook 35

12 Command line 37
12.1 Command Line Usage . 37

13 Cellpose API Guide 39
13.1 Cellpose class . 39
13.2 CellposeModel . 41
13.3 CellposeDenoiseModel . 44
13.4 DenoiseModel . 46
13.5 SizeModel . 48
13.6 Training . 50
13.7 Metrics . 53
13.8 Flows to masks . 54
13.9 Image transforms . 60
13.10 Plot functions . 66
13.11 I/O functions . 68
13.12 Utils functions . 72
13.13 Network classes . 77
13.14 Core functions . 80
13.15 All models functions . 82

14 Cellpose CLI 91
14.1 Command Line Usage . 91

14.1.1 Named Arguments . 92
14.1.2 Hardware Arguments . 92
14.1.3 Input Image Arguments . 92
14.1.4 Model Arguments . 93
14.1.5 Algorithm Arguments . 93
14.1.6 Output Arguments . 94
14.1.7 Training Arguments . 95

Python Module Index 97

Index 99

ii

cellpose, Release 3.0.7-19-g0ce3653

cellpose is an anatomical segmentation algorithm written in Python 3 by Carsen Stringer and Marius Pachitariu. For
support, please open an issue.

We make pip installable releases of cellpose, here is the pypi. You can install it as pip install cellpose[gui].

You can try it out without installing at cellpose.org. Also check out these resources:

Cellpose3: one-click image restoration for improved cellular segmentation

• paper on biorxiv

• thread

Cellpose 2.0: how to train your own model

• paper on biorxiv

• talk

• twitter thread

• human-in-the-loop training protocol video

Cellpose: a generalist algorithm for cellular segmentation

• paper on biorxiv (see figure 1 below) and in nature methods

• twitter thread

• Marius’s talk

BASICS: 1

https://github.com/MouseLand/cellpose/issues
https://pypi.org/project/cellpose/
http://www.cellpose.org
https://www.biorxiv.org/content/10.1101/2024.02.10.579780v1
https://neuromatch.social/@computingnature/111932247922392030
https://www.biorxiv.org/content/10.1101/2022.04.01.486764v1
https://www.youtube.com/watch?v=3ydtAhfq6H0
https://twitter.com/marius10p/status/1511415409047650307?s=20&t=umTVIG1CFKIWHYMrQqFKyQ
https://youtu.be/3Y1VKcxjNy4
https://www.biorxiv.org/content/10.1101/2020.02.02.931238v1
https://t.co/kBMXmPp3Yn?amp=1
https://twitter.com/computingnature/status/1224477812763119617
https://www.youtube.com/watch?v=7y9d4VIKiS8

cellpose, Release 3.0.7-19-g0ce3653

2 BASICS:

CHAPTER

ONE

INSTALLATION

For basic install instructions, look up the main github readme.

1.1 Built-in model directory

By default, the pretrained cellpose models are downloaded to $HOME/.cellpose/models/. This path on linux would
look like /home/USERNAME/.cellpose/, and on Windows, C:/Users/USERNAME/.cellpose/models/. These
models are downloaded the first time you try to use them, either on the command line, in the GUI or in a notebook.

If you’d like to download the models to a different directory, and are using the command line or the GUI, before you run
python -m cellpose ..., you will need to always set the environment variable CELLPOSE_LOCAL_MODELS_PATH
(thanks Chris Roat for implementing this!).

To set the environment variable in the command line/Anaconda prompt on windows run the following command mod-
ified for your path: set CELLPOSE_LOCAL_MODELS_PATH=C:/PATH_FOR_MODELS/. To set the environment variable
in the command line on linux, run export CELLPOSE_LOCAL_MODELS_PATH=/PATH_FOR_MODELS/.

To set this environment variable when running cellpose in a jupyter notebook, run this code at the beginning of your
notebook before you import cellpose:

import os
os.environ["CELLPOSE_LOCAL_MODELS_PATH"] = "/PATH_FOR_MODELS/"

1.2 M1 Mac installation

Please use the instructions provided on image.sc <https://forum.image.sc/t/cellpose-on-macos-m1-pro-apple-silicon-
arm64/68018/4> by Peter Sobolewski. From the command line you can choose the Mac device with

python -m cellpose --dir path --gpu_device mps --use_gpu

3

cellpose, Release 3.0.7-19-g0ce3653

1.3 AMD GPU ROCm installation

As an alternative to the CUDA acceleration for NVIDIA GPUs, you can use the ROCm acceleration for AMD GPUs.
This is not yet supported on Windows, but is supported on Linux. Installation instructions are available here. Just like
the NVIDIA CUDA installation, you will need to install the ROCm drivers first and then install Cellpose. Be warned
that the ROCm project is significantly less mature than CUDA, and you may run into issues.

Warning: The ROCm acceleration is not yet supported on Windows, and is only supported on Linux. If you are
on Windows, you will need to use CUDA acceleration.

Warning: ROCm is significantly less mature than the CUDA acceleration, and you may run into issues.

1.4 Common issues

If you are having issues with CUDA on Windows, or want to use Cuda Toolkit 10, please follow these instructions:

conda create -n cellpose pytorch=1.8.2 cudatoolkit=10.2 -c pytorch-lts
conda activate cellpose
pip install cellpose

If you receive the error: No module named PyQt5.sip, then try uninstalling and reinstalling pyqt5

pip uninstall pyqt5 pyqt5-tools
pip install pyqt5 pyqt5-tools pyqt5.sip

If you are having other issues with the graphical interface and QT, see some advice here .

If you have errors related to OpenMP and libiomp5, then try

::
conda install nomkl

If you receive an error associated with matplotlib, try upgrading it:

pip install matplotlib --upgrade

If you receive the error: ImportError: _arpack DLL load failed, then try uninstalling and reinstalling scipy

pip uninstall scipy
pip install scipy

If you are on Yosemite Mac OS or earlier, PyQt doesn’t work and you won’t be able to use the graphical interface for
cellpose. More recent versions of Mac OS are fine. The software has been heavily tested on Windows 10 and Ubuntu
18.04, and less well tested on Mac OS. Please post an issue if you have installation problems.

4 Chapter 1. Installation

https://docs.amd.com/bundle/ROCm-Installation-Guide-v5.5/page/Introduction_to_ROCm_Installation_Guide_for_Linux.html
https://github.com/MouseLand/cellpose/issues/481#issuecomment-1080137885
https://github.com/MouseLand/cellpose/issues/564#issuecomment-1268061118

cellpose, Release 3.0.7-19-g0ce3653

1.5 Dependencies

cellpose relies on the following excellent packages (which are automatically installed with pip if missing):

• pytorch

• pyqtgraph

• PyQt5 or pyside or PyQt6

• numpy (>=1.16.0)

• numba

• scipy

• tifffile

• natsort

• fastremap

• roifile

• superqt

1.5. Dependencies 5

https://pytorch.org/
http://pyqtgraph.org/
http://pyqt.sourceforge.net/Docs/PyQt5/
http://www.numpy.org/
http://numba.pydata.org/numba-doc/latest/user/5minguide.html
https://www.scipy.org/
https://pypi.org/project/tifffile/
https://natsort.readthedocs.io/en/master/
https://github.com/seung-lab/fastremap
https://github.com/cgohlke/roifile
https://github.com/pyapp-kit/superqt

cellpose, Release 3.0.7-19-g0ce3653

6 Chapter 1. Installation

CHAPTER

TWO

GUI

2.1 Starting the GUI

The quickest way to start is to open the GUI from a command line terminal. You might need to open an anaconda
prompt if you did not add anaconda to the path:

python -m cellpose

The first time cellpose runs it downloads the latest available trained model weights from the website.

You can drag and drop images (.tif, .png, .jpg, .gif) into the GUI and run Cellpose, and/or manually segment them.
When the GUI is processing, you will see the progress bar fill up and during this time you cannot click on anything in
the GUI. For more information about what the GUI is doing you can look at the terminal/prompt you opened the GUI
with. For example data, see cellpose website. For best accuracy and runtime performance, resize images so cells are
less than 100 pixels across.

For multi-channel, multi-Z tiff’s, the expected format is Z x channels x Ly x Lx.

For multi-Z 3D data, please use the 3D version of the GUI:

python -m cellpose --Zstack

Note: The output file with the masks is in the same folder as the loaded image with _seg.npy appended. The GUI
automatically saves after you draw an ROI but NOT after running a model for segmentation and NOT after 3D mask
drawing (too slow). Save in the file menu or with Ctrl+S.

Note: Since the output file is in the same folder as the loaded image with _seg.npy appended, make sure you have
WRITE access in the folder, otherwise the file will not save.

7

https://www.cellpose.org

cellpose, Release 3.0.7-19-g0ce3653

2.2 Using the GUI

The GUI serves two main functions:

1. Running the segmentation algorithm.

2. Manually labelling data.

3. (NEW) Fine-tuning a pretrained cellpose model on your own data.

Main GUI mouse controls (works in all views):

• Pan = left-click + drag

• Zoom = scroll wheel (or +/= and - buttons)

• Full view = double left-click

• Select mask = left-click on mask

• Delete mask = Ctrl (or Command on Mac) + left-click

• Merge masks = Alt + left-click (will merge last two)

• Start draw mask = right-click

• End draw mask = right-click, or return to circle at beginning

8 Chapter 2. GUI

cellpose, Release 3.0.7-19-g0ce3653

2.3 Drawing masks

Masks are started with right-click, then hover your mouse (do not hold it down), and return it to the red circle to
complete the mask. The mask should now be completed.

Overlaps in masks are NOT allowed. If you draw a mask on top of another mask, it is cropped so that it doesn’t overlap
with the old mask. Masks in 2D should be single strokes (if single_stroke is checked).

If you want to draw masks in 3D, then you can turn single_stroke option off and draw a stroke on each plane with the
cell and then press ENTER. You can also draw multiple strokes on the same plane for complex cell shapes, but do not
do this in 2D if you plan to train a cellpose model (the cell flows will not work correctly).

Note: 3D labelling will fill in unlabelled z-planes so that you do not have to densely label, for example you can skip
some planes, and the cell will be interpolated between planes.

After each mask is drawn in 2D, it is saved to the _seg.npy. If this is slow (for large images), this “autosave” option
can be turned off in the “File” menu (“Disable autosave _seg.npy file”). In 3D, the mask is never auto-saved, instead
save masks by clicking CTRL+S, or “Save” in the “File” menu.

2.4 Bulk Mask Deletion

Clicking the ‘delete multiple’ button will allow you to select and delete multiple masks at once. Masks can be deselected
by clicking on them again. Once you have selected all the masks you want to delete, click the ‘done’ button to delete
them.

Alternatively, you can create a rectangular region to delete a regions of masks by clicking the ‘delete multiple’ button,
and then moving and/or resizing the region to select the masks you want to delete. Once you have selected the masks
you want to delete, click the ‘done’ button to delete them.

At any point in the process, you can click the ‘cancel’ button to cancel the bulk deletion.

2.5 Segmentation options

SIZE: you can manually enter the approximate diameter for your cells, or press “calibrate” to let the model estimate it.
The size is represented by a disk at the bottom of the view window (can turn this disk off by unchecking “scale disk
on”).

use GPU: if you have installed the cuda version of mxnet, then you can activate this, but it won’t give huge speedups
when running single images in the GUI.

MODEL: there is a cytoplasm model and a nuclei model, choose what you want to segment

CHAN TO SEG: this is the channel in which the cytoplasm or nuclei exist

CHAN2 (OPT): if cytoplasm model is chosen, then choose the nuclear channel for this option

2.3. Drawing masks 9

cellpose, Release 3.0.7-19-g0ce3653

2.6 Training your own cellpose model

Check out this video to learn the process.

1. Drag and drop an image from a folder of images with a similar style (like similar cell types).

2. Run the built-in models on one of the images using the “model zoo” and find the one that works best for your
data. Make sure that if you have a nuclear channel you have selected it for CHAN2.

3. Fix the labelling by drawing new ROIs (right-click) and deleting incorrect ones (CTRL+click). The GUI au-
tosaves any manual changes (but does not autosave after running the model, for that click CTRL+S). The seg-
mentation is saved in a _seg.npy file.

4. Go to the “Models” menu in the File bar at the top and click “Train new model. . . ” or use shortcut CTRL+T.

5. Choose the pretrained model to start the training from (the model you used in #2), and type in the model name
that you want to use. The other parameters should work well in general for most data types. Then click OK.

6. The model will train (much faster if you have a GPU) and then auto-run on the next image in the folder. Next
you can repeat #3-#5 as many times as is necessary.

7. The trained model is available to use in the future in the GUI in the “custom model” section and is saved in your
image folder.

If you have 3D data, please save random XY, YZ and XZ slices through your 3D data, ideally sufficiently spaced from
each other so the information each slice has is distinct. Then put these slices into a folder and start the human-in-the-
loop training. You can then use the new custom model on new 3D data.

Note: You can only start training with one of the built-in Cellpose models or from scratch. When you start training
from a built-in model or from scratch each time, then you are training the network on all the previously labelled images
in the folder and weighting them equally in your training set.

If you restart from a previous retraining, you are biasing the network towards the earlier images it has already been
trained on. Conversely, if you have created a custom model with different images, and you retrain that model, then you
are downweighting the images that you have already trained on and excluded from your new training set. Therefore,
we recommend having all images that you want to be trained for the same model in the same folder so they are all used.

See the Models doc for info on the new model zoo and suggestion mode.

2.7 Contributing training data

We are very excited about receiving community contributions to the training data and re-training the cytoplasm model
to make it better. Please follow these guidelines:

1. Run cellpose on your data to see how well it does. Try varying the diameter, which can change results a little.

2. If there are relatively few mistakes, it won’t help much to contribute labelled data.

3. If there are consistent mistakes, your data is likely very different from anything in the training set, and you should
expect major improvements from contributing even just a few manually segmented images.

4. For images that you contribute, the cells should be at least 10 pixels in diameter, and there should be at least
several dozens of cells per image, ideally ~100. If your images are too small, consider combining multiple images
into a single big one and then manually segmenting that. If they are too big, consider splitting them into smaller
crops.

10 Chapter 2. GUI

https://youtu.be/3Y1VKcxjNy4

cellpose, Release 3.0.7-19-g0ce3653

5. For the manual segmentation, please try to outline the boundaries of the cell, so that everything (membrane,
cytoplasm, nucleus) is inside the boundaries. Do not just outline the cytoplasm and exclude the membrane,
because that would be inconsistent with our own labelling and we wouldn’t be able to use that.

6. Do not use the results of the algorithm in any way to do contributed manual segmentations. This can reinforce a
vicious circle of mistakes, and compromise the dataset for further algorithm development.

If you are having problems with the nucleus model, please open an issue before contributing data. Nucleus images
are generally much less diverse, and we think the current training dataset already covers a very large set of modalities.
Additionally, you can run a non-nuclear model on nuclear data such as cyto.

2.8 Keyboard shortcuts

Keyboard shortcuts Description
CTRL+H help
=/+ // - zoom in // zoom out
CTRL+Z undo previously drawn mask/stroke
CTRL+0 clear all masks
CTRL+L load image (can alternatively drag and drop image)
CTRL+S SAVE MASKS IN IMAGE to _seg.npy file
CTRL+T start model training using _seg.npy files
CTRL+P load _seg.npy file (note: it will load automatically with image if it exists)
CTRL+M load masks file (must be same size as image with 0 for NO mask, and 1,2,3. . . for

masks)
CTRL+N save masks as PNG
CTRL+R save ROIs to native ImageJ ROI format
CTRL+F save flows to image file
A/D or LEFT/RIGHT cycle through images in current directory
W/S or UP/DOWN change color (RGB/gray/red/green/blue)
R / G / B press to toggle RGB and Red or Green or Blue
PAGE-UP / PAGE-
DOWN

change to flows and cell prob views (if segmentation computed)

X turn masks ON or OFF
Z toggle outlines ON or OFF
, / . increase / decrease brush size for drawing

2.8. Keyboard shortcuts 11

cellpose, Release 3.0.7-19-g0ce3653

12 Chapter 2. GUI

CHAPTER

THREE

INPUTS

You can use tiffs or PNGs or JPEGs. We use the image loader from scikit-image. Single plane images can read into
data as nY x nX x channels or channels x nY x nX. Then the channels settings will take care of reshaping the input
appropriately for the network. Note the model also rescales the input for each channel so that 0 = 1st percentile of
image values and 1 = 99th percentile.

If you want to run multiple images in a directory, use the command line or a jupyter notebook to run cellpose.

3.1 3D segmentation

Tiffs with multiple planes and multiple channels are supported in the GUI (can drag-and-drop tiffs) and supported when
running in a notebook. Multiplane images should be of shape nplanes x channels x nY x nX or as nplanes x nY x nX.
You can test this by running in python

import tifffile
data = tifffile.imread('img.tif')
print(data.shape)

If drag-and-drop of the tiff into the GUI does not work correctly, then it’s likely that the shape of the tiff is incorrect. If
drag-and-drop works (you can see a tiff with multiple planes), then the GUI will automatically run 3D segmentation and
display it in the GUI. Watch the command line for progress. It is recommended to use a GPU to speed up processing.

When running cellpose in a notebook, set do_3D=True to enable 3D processing. You can give a list of 3D inputs, or a
single 3D/4D stack. When running on the command line, add the flag --do_3D (it will run all tiffs in the folder as 3D
tiffs if possible).

If the 3D segmentation is not working well and there is inhomogeneity in Z, try stitching masks in Z instead of running
do_3D=True. See details for this option here: stitch_threshold.

If drag-and-drop doesn’t work because of the shape of your tiff, you need to transpose the tiff and resave to use the GUI,
or use the napari plugin for cellpose, or run CLI/notebook and specify the channel_axis and/or z_axis parameters:

channel_axis and z_axis can be used to specify the axis (0-based) of the image which corresponds to
the image channels and to the z axis. For example an image with 2 channels of shape (1024,1024,2,105,1)
can be specified with channel_axis=2 and z_axis=3. If channel_axis=None cellpose will try to
automatically determine the channel axis by choosing the dimension with the minimal size after squeezing.
If z_axis=None cellpose will automatically select the first non-channel axis of the image to be the Z axis.
These parameters can be specified using the command line with --channel_axis or --z_axis or as
inputs to model.eval for the Cellpose or CellposeModel model.

13

settings.html#channels
settings.html#d-settings

cellpose, Release 3.0.7-19-g0ce3653

14 Chapter 3. Inputs

CHAPTER

FOUR

SETTINGS

The important settings are described on this page. See the Cellpose class for all run options.

Here is an example of calling the Cellpose class and running a list of images for reference: ::code-block:

from cellpose import models
from cellpose.io import imread

model_type='cyto' or model_type='nuclei'
model = models.Cellpose(gpu=False, model_type='cyto')

files = ['img0.tif', 'img1.tif']
imgs = [imread(f) for f in files]
masks, flows, styles, diams = model.eval(imgs, diameter=None, channels=[0,0],

flow_threshold=0.4, do_3D=False)

You can make lists of channels/diameter for each image, or set the same channels/diameter for all images as shown in
the example above.

4.1 Channels

There are two channels inputs. The first channel is the channel you want to segment. The second channel is an optional
channel that is helpful in models trained with images with a nucleus channel. See more details in the models page.

1. 0=grayscale, 1=red, 2=green, 3=blue

2. 0=None (will set to zero), 1=red, 2=green, 3=blue

Set channels to a list with each of these elements, e.g. channels = [0,0] if you want to segment cells in grayscale
or for single channel images, or channels = [2,3] if you green cells with blue nuclei.

On the command line the above would be --chan 0 --chan2 0 or --chan 2 --chan2 3.

Note, if you set the first channel input to use grayscale 0, then no nuclear channel will be used (the second channel will
be filled with zeros).

15

cellpose, Release 3.0.7-19-g0ce3653

4.2 Diameter

The cellpose models have been trained on images which were rescaled to all have the same diameter (30 pixels in the
case of the cyto model and 17 pixels in the case of the nuclei model). Therefore, cellpose needs a user-defined cell
diameter (in pixels) as input, or to estimate the object size of an image-by-image basis.

The automated estimation of the diameter is a two-step process using the style vector from the network, a 64-dimensional
summary of the input image. We trained a linear regression model to predict the size of objects from these style vectors
on the training data. On a new image the procedure is as follows.

1. Run the image through the cellpose network and obtain the style vector. Predict the size using the linear regression
model from the style vector.

2. Resize the image based on the predicted size and run cellpose again, and produce ROIs. Take the final estimated
size as the median diameter of the predicted ROIs.

For automated estimation set diameter = None or diameter = 0. However, if this estimate is incorrect please set
the diameter by hand.

Changing the diameter will change the results that the algorithm outputs. When the diameter is set smaller than the
true size then cellpose may over-split cells. Similarly, if the diameter is set too big then cellpose may over-merge cells.

4.3 Resample

The cellpose network is run on your rescaled image – where the rescaling factor is determined by the diameter you input
(or determined automatically as above). For instance, if you have an image with 60 pixel diameter cells, the rescaling
factor is 30./60. = 0.5. After determining the flows (dX, dY, cellprob), the model runs the dynamics. The dynamics
can be run at the rescaled size (resample=False), or the dynamics can be run on the resampled, interpolated flows at
the true image size (resample=True). resample=True will create smoother ROIs when the cells are large but will
be slower in case; resample=False will find more ROIs when the cells are small but will be slower in this case. By
default in versions >=1.0 resample=True.

The nuclear model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and
the second channel is always set to an array of zeros. Therefore set the first channel as 0=grayscale, 1=red, 2=green,
3=blue; and set the second channel to zero, e.g. channels = [0,0] if you want to segment nuclei in grayscale or for
single channel images, or channels = [3,0] if you want to segment blue nuclei.

If the nuclear model isn’t working well, try the cytoplasmic model.

4.4 Flow threshold

Note there is nothing keeping the neural network from predicting horizontal and vertical flows that do not correspond
to any real shapes at all. In practice, most predicted flows are consistent with real shapes, because the network was only
trained on image flows that are consistent with real shapes, but sometimes when the network is uncertain it may output
inconsistent flows. To check that the recovered shapes after the flow dynamics step are consistent with real ROIs, we
recompute the flow gradients for these putative predicted ROIs, and compute the mean squared error between them and
the flows predicted by the network.

The flow_threshold parameter is the maximum allowed error of the flows for each mask. The default is
flow_threshold=0.4. Increase this threshold if cellpose is not returning as many ROIs as you’d expect. Similarly,
decrease this threshold if cellpose is returning too many ill-shaped ROIs.

16 Chapter 4. Settings

cellpose, Release 3.0.7-19-g0ce3653

4.5 Cellprob threshold

The network predicts 3 outputs: flows in X, flows in Y, and cell “probability”. The predictions the network makes
of the probability are the inputs to a sigmoid centered at zero (1 / (1 + e^-x)), so they vary from around -6 to +6.
The pixels greater than the cellprob_threshold are used to run dynamics and determine ROIs. The default is
cellprob_threshold=0.0. Decrease this threshold if cellpose is not returning as many ROIs as you’d expect. Sim-
ilarly, increase this threshold if cellpose is returning too ROIs particularly from dim areas.

4.6 Number of iterations niter

The flows from the network are used to simulate a dynamical system governing the movements of the pixels. We
simulate the dynamics for niter iterations. The pixels that converge to the same position make up a single ROI. The
default niter=None or niter=0 sets the number of iterations to be proportional to the ROI diameter. For longer ROIs,
more iterations might be needed, for example niter=2000, for convergence.

4.7 3D settings

Volumetric stacks do not always have the same sampling in XY as they do in Z. Therefore you can set an anisotropy
parameter to allow for differences in sampling, e.g. set to 2.0 if Z is sampled half as dense as X or Y.

There may be additional differences in YZ and XZ slices that make them unable to be used for 3D segmentation. I’d
recommend viewing the volume in those dimensions if the segmentation is failing. In those instances, you may want
to turn off 3D segmentation (do_3D=False) and run instead with stitch_threshold>0. Cellpose will create ROIs
in 2D on each XY slice and then stitch them across slices if the IoU between the mask on the current slice and the next
slice is greater than or equal to the stitch_threshold.

3D segmentation ignores the flow_threshold because we did not find that it helped to filter out false positives in our
test 3D cell volume. Instead, we found that setting min_size is a good way to remove false positives.

4.5. Cellprob threshold 17

cellpose, Release 3.0.7-19-g0ce3653

18 Chapter 4. Settings

CHAPTER

FIVE

OUTPUTS

5.1 in a notebook

when you run

from cellpose import io, models
img = io.imread("img.tif")
masks, flows, styles = models.CellposeModel(model_type='tissuenet_cp3').eval(img,

diameter=25, channels=[1,2])

Internally, the network predicts 3 (or 4) outputs: (flows in Z), flows in Y, flows in X, and cellprob. The predictions the
network makes of cellprob are used as inputs to a sigmoid centered at zero (1 / (1 + e^-x)) in the loss function (binary
cross-entropy loss), so they vary from around -10 to +10. These are output from the eval function as the second variable
flows. The Y flows and X flows are used to simulate a dynamical system on the pixels, which is run on only pixels with
a cellprob > cellprob_threshold. All pixels which converge to the same point are assigned the same label in
the masks output, of size (Lz x) Ly x Lx (0 = NO ROI; 1,2,. . . = ROI labels). The styles are the sum over pixels of the
output of the last downsampling layer of the network.

Cellpose also produces various outputs from the command line and the GUI, which are described below:

5.2 _seg.npy output

*_seg.npy files have the following fields:

• filename : filename of image

• masks : each pixel in the image is assigned to an ROI (0 = NO ROI; 1,2,. . . = ROI labels)

• outlines : outlines of ROIs (0 = NO outline; 1,2,. . . = outline labels)

• chan_choose : channels that you chose in GUI (0=gray/none, 1=red, 2=green, 3=blue)

• ismanual : element k = whether or not mask k was manually drawn or computed by the cellpose algorithm

• flows :

– flows[0] is XY flow in RGB

– flows[1] is the cell probability in range 0-255 instead of -10.0 to 10.0

– flows[2] is Z flow in range 0-255 (if it exists, otherwise zeros),

– flows[3] is [dY, dX, cellprob] (or [dZ, dY, dX, cellprob] for 3D), flows[4] is pixel destinations (for
internal use)

• est_diam : estimated diameter / diameter used

19

cellpose, Release 3.0.7-19-g0ce3653

• zdraw : for each mask, which planes were manually labelled (planes in between manually drawn have interpolated
ROIs)

Note: the ‘img’ is no longer saved in the *_seg.npy file to save time.

Here is an example of loading in a *_seg.npy file and plotting masks and outlines

import numpy as np
from cellpose import plot, utils, io
dat = np.load('_seg.npy', allow_pickle=True).item()
img = io.imread('img.tif')

plot image with masks overlaid
mask_RGB = plot.mask_overlay(img, dat['masks'],

colors=np.array(dat['colors']))

plot image with outlines overlaid in red
outlines = utils.outlines_list(dat['masks'])
plt.imshow(img)
for o in outlines:

plt.plot(o[:,0], o[:,1], color='r')

If you run in a notebook and want to save to a *_seg.npy file, run

from cellpose import io
io.masks_flows_to_seg(images, masks, flows, file_name, channels=channels, diams=diams)

where each of these inputs is a list (as the output of model.eval is)

5.3 PNG output

You can save masks to PNG in the GUI.

To save masks (and other plots in PNG) using the command line, add the flag --save_png.

Or use the function below if running in a notebook

from cellpose import io
io.save_masks(images, masks, flows, image_names, png=True)

5.4 Native ImageJ ROI archive output

You can save the outlines of the ROIs in a ImageJ-native ROI archive file. Rather than using the legacy solution below,
you can use this function to create an ROI archive file that can be opened in directly in ImageJ. Recent versions of
ImageJ can autodetect the file format. Open in ImageJ using File > Open. . . and select the file. The ROIs will appear
in the ROI manager.

To save the outlines using the CLI use the flag --save_rois.

To save the outlines using the API use the save_rois function in io.py:

This function is also available in the GUI.

20 Chapter 5. Outputs

cellpose, Release 3.0.7-19-g0ce3653

from cellpose import io, utils

image_name is file name of image
masks is numpy array of masks for image
io.save_rois(masks, '<your_filename_string>')

the file will be saved as '<your_filename_string>_rois.zip'

5.5 (Legacy ImageJ Interface) ROI manager compatible output for Im-
ageJ

You can save the outlines of ROIs in a text file that’s compatible with ImageJ ROI Manager in the GUI File menu.

To save using the command line, add the flag --save_outlines.

Or use the function below if running in a notebook

from cellpose import io, utils

image_name is file name of image
masks is numpy array of masks for image
base = os.path.splitext(image_name)[0]
outlines = utils.outlines_list(masks)
io.outlines_to_text(base, outlines)

To load this _cp_outlines.txt file into ImageJ, use the python script provided in cellpose:
imagej_roi_converter.py. Run this as a macro after opening your image file. It will ask you to input the
path to the _cp_outlines.txt file. Input that and the ROIs will appear in the ROI manager.

5.6 Plotting functions

In plot.py there are functions, like show_segmentation:

from cellpose import plot

nimg = len(imgs)
for idx in range(nimg):

maski = masks[idx]
flowi = flows[idx][0]

fig = plt.figure(figsize=(12,5))
plot.show_segmentation(fig, imgs[idx], maski, flowi, channels=channels[idx])
plt.tight_layout()
plt.show()

5.5. (Legacy ImageJ Interface) ROI manager compatible output for ImageJ 21

cellpose, Release 3.0.7-19-g0ce3653

22 Chapter 5. Outputs

CHAPTER

SIX

MODELS

from cellpose import models

Each model will be downloaded automatically to your models.MODELS_DIR (see Installation instructions for more
details on MODELS_DIR). You can also directly download a model by going to the URL, e.g.:

https://www.cellpose.org/models/MODEL_NAME

All built-in models were trained with the ROIs resized to a diameter of 30.0 (diam_mean = 30), except the ‘nuclei’
model which was trained with a diameter of 17.0 (diam_mean = 17). User-trained models will be trained with the
same diam_mean as the model they are initalized with. The models will internally take care of rescaling the images
given a user-provided diameter (or with the diameter from auto-diameter estimation in full models).

6.1 Full built-in models

These models have Cellpose model weights and a size model. This means you can run with diameter=0 or
--diameter 0 and the model can estimate the ROI size. However, we recommend that you set the diameter for
your ROIs rather than having Cellpose guess the diameter.

These models can be loaded and used in the notebook with models.Cellpose(model_type='cyto3') or in the
command line with python -m cellpose --pretrained_model cyto3.

We have a nucleimodel and a super-generalist cyto3model. There are also two older models, cyto, which is trained
on only the Cellpose training set, and cyto2, which is also trained on user-submitted images.

FYI we are no longer using the 4 different versions and --net_avg is deprecated.

6.1.1 Cytoplasm model ('cyto3', 'cyto2', 'cyto')

The cytoplasm models in cellpose are trained on two-channel images, where the first channel is the channel to segment,
and the second channel is an optional nuclear channel. Here are the options for each: 1. 0=grayscale, 1=red, 2=green,
3=blue 2. 0=None (will set to zero), 1=red, 2=green, 3=blue

Set channels to a list with each of these elements, e.g. channels = [0,0] if you want to segment cells in grayscale
or for single channel images, or channels = [2,3] if you green cells with blue nuclei.

The ‘cyto3’ model is trained on 9 datasets, see the Cellpose3 paper for more details.

23

cellpose, Release 3.0.7-19-g0ce3653

6.1.2 Nucleus model (‘nuclei’)

The nuclear model in cellpose is trained on two-channel images, where the first channel is the channel to segment, and
the second channel is always set to an array of zeros. Therefore set the first channel as 0=grayscale, 1=red, 2=green,
3=blue; and set the second channel to zero, e.g. channels = [0,0] if you want to segment nuclei in grayscale or for
single channel images, or channels = [3,0] if you want to segment blue nuclei.

6.2 Other built-in models

The main built-in models are dataset-specific models trained on one of the 9 datasets in the Cellpose3 paper. These
models do not have a size model. If the diameter is set to 0.0, then the model uses the default diam_mean for the
diameter (30.0).

These models can be loaded and used in the notebook with e.g. models.
CellposeModel(model_type='tissuenet_cp3') or models.CellposeModel(model_type='livecell_cp3'),
or in the command line with python -m cellpose --pretrained_model tissuenet_cp3.

The dataset-specific models were trained on the training images provided in the following datasets:

• tissuenet_cp3: tissuenet dataset.

• livecell_cp3: livecell dataset

• yeast_PhC_cp3: YEAZ dataset

• yeast_BF_cp3: YEAZ dataset

• bact_phase_cp3: omnipose dataset

• bact_fluor_cp3: omnipose dataset

• deepbacs_cp3: deepbacs dataset

• cyto2_cp3: cellpose dataset

6.3 User-trained models

By default, models are trained with the ROIs resized to a diameter of 30.0 (diam_mean = 30) – this is necessary if
you want to start from a pretrained cellpose model. If you want to use a different diameter and use pretraining, we
recommend performing training yourself on the cellpose dataset with that diameter so the model learns objects at that
size. All user-trained models will save the diam_mean so it will be loaded automatically along with the model weights.

Each model also saves the diam_labels which is the mean diameter of the ROIs in the training images. This value is
auto-loaded into the GUI for use with the model, or will be used if the diameter is 0 (diameter=0 or --diameter 0).

These models can be loaded and used in the notebook with e.g. models.
CellposeModel(model_type='name_in_gui') or with the full path models.
CellposeModel(pretrained_model='/full/path/to/model') . If you trained in the GUI, you can auto-
matically use the model_type argument. If you trained in the command line, you need to first add the model
to the cellpose path either in the GUI in the Models menu, or using the command line: python -m cellpose
--add_model /full/path/to/model.

Or these models can be used in the command line with python -m cellpose --pretrained_model name_in_gui
or python -m cellpose --pretrained_model /full/path/to/model .

24 Chapter 6. Models

https://datasets.deepcell.org/
https://sartorius-research.github.io/LIVECell/
https://www.epfl.ch/labs/lpbs/data-and-software/
https://www.epfl.ch/labs/lpbs/data-and-software/
https://osf.io/xmury/
https://osf.io/xmury/
https://github.com/HenriquesLab/DeepBacs/wiki/Segmentation
http://www.cellpose.org/dataset

CHAPTER

SEVEN

IMAGE RESTORATION

The image restoration module denoise provides functions for restoring degraded images. There are two main
classes, DenoiseModel for image restoration only, and CellposeDenoiseModel for image restoration and then
segmentation. There are three types of image restoration provided, denoising, deblurring, and upsampling, and
for each of these there are two models, one trained on the full cyto3 training set and one trained on the nuclei
training set: 'denoise_cyto3', 'deblur_cyto3', 'upsample_cyto3', 'denoise_nuclei', 'deblur_nuclei',
'upsample_nuclei'.

7.1 DenoiseModel

Initialize a DenoiseModel with the model_type:

from cellpose import denoise
dn = denoise.DenoiseModel(model_type="denoise_cyto3", gpu=True)

Now you can apply this denoising model to specified channels in your images, using the Cellpose channel format (e.g.
channels=[1,2]), or leave channels=None to apply the model to all channels. Make sure to set the diameter to the
size of the objects in your image.

imgs_dn = dn.eval(imgs, channels=None, diameter=50.)

If you have two channels, and the second is a nuclear channel, you can specify to use the nuclei restoration models on
the second channel, with chan2=True:

from cellpose import denoise
dn = denoise.DenoiseModel(model_type="denoise_cyto3", gpu=True, chan2=True)
imgs_dn = dn.eval(imgs, channels=[1,2], diameter=50.)

The upsampling model 'upsample_cyto3' enables upsampling to diameter of 30., and the upsampling model
'upsample_nuclei' enables upsampling to diameter of 17. If you have images, for example, in which the objects are
of diameter 10, specify that in the function call, and then the model will upsample the image to 30 or 17:

from cellpose import denoise
dn = denoise.DenoiseModel(model_type="upsample_cyto3", gpu=True, chan2=True)
imgs_up = dn.eval(imgs, channels=[1,2], diameter=10.)

For more details refer to the API section.

25

cellpose, Release 3.0.7-19-g0ce3653

7.2 CellposeDenoiseModel

The CellposeDenoiseModel wraps the CellposeModel and DenoiseModel into one class to ensure the channels and
diameters are handled properly. See example:

from cellpose import denoise
model = denoise.CellposeDenoiseModel(gpu=True, model_type="cyto3",

restore_type="denoise_cyto3", chan2_restore=True)
masks, flows, styles, imgs_dn = model.eval(imgs, channels=[1,2], diameter=50.)

For more details refer to the API section.

7.3 Command line usage

These models can be used on the command line with input --restore_type and flag --chan2_restore.

26 Chapter 7. Image Restoration

CHAPTER

EIGHT

TRAINING

At the beginning of training, cellpose computes the flow field representation for each mask image (dynamics.
labels_to_flows).

The cellpose pretrained models are trained using resized images so that the cells have the same median diameter across
all images. If you choose to use a pretrained model, then this fixed median diameter is used.

If you choose to train from scratch, you can set the median diameter you want to use for rescaling with the --diam_mean
flag. We trained all model zoo models with a diameter of 30.0 pixels, except the nuclei model which used a diameter
of 17 pixels, so if you want to start with a pretrained model, it will default to those values.

The models will be saved in the image directory (--dir) in a folder called models/.

The same channel settings apply for training models.

Note Cellpose expects the labelled masks (0=no mask, 1,2. . .=masks) in a separate file, e.g:

wells_000.tif
wells_000_masks.tif

You can use a different ending from _masks with the --mask_filter option, e.g. --mask_filter _masks_2022.

Also, you can train a model using the labels from the GUI (_seg.npy) by using the following option --mask_filter
_seg.npy.

If you use the –img_filter option (--img_filter _img in this case):

wells_000_img.tif
wells_000_masks.tif

Warning: The path given to --dir and --test_dir should be an absolute path.

To train on cytoplasmic images (green cyto and red nuclei) starting with a pretrained model from cellpose (one of the
model zoo models), we also have included the recommended training parameters in the command below:

python -m cellpose --train --dir ~/images_cyto/train/ --test_dir ~/images_cyto/test/ --
→˓pretrained_model cyto --chan 2 --chan2 1 --learning_rate 0.1 --weight_decay 0.0001 --n_
→˓epochs 100

You can train from scratch as well:

python -m cellpose --train --dir ~/images_nuclei/train/ --pretrained_model None

To train the cyto model from scratch using the same parameters we did, download the dataset and run

27

cellpose, Release 3.0.7-19-g0ce3653

python -m cellpose --train --train_size --use_gpu --dir ~/cellpose_dataset/train/ --test_
→˓dir ~/cellpose_dataset/test/ --img_filter _img --pretrained_model None --chan 2 --
→˓chan2 1

You can also specify the full path to a pretrained model to use:

python -m cellpose --dir ~/images_cyto/test/ --pretrained_model ~/images_cyto/test/model/
→˓cellpose_35_0 --save_png

In a notebook, you can train with the train_seg function:

from cellpose import io, models, train
io.logger_setup()

output = io.load_train_test_data(train_dir, test_dir, image_filter="_img",
mask_filter="_masks", look_one_level_down=False)

images, labels, image_names, test_images, test_labels, image_names_test = output

e.g. retrain a Cellpose model
model = models.CellposeModel(model_type="cyto3")

model_path = train.train_seg(model.net, train_data=images, train_labels=labels,
channels=[1,2], normalize=True,
test_data=test_images, test_labels=test_labels,
weight_decay=1e-4, SGD=True, learning_rate=0.1,
n_epochs=100, model_name="my_new_model")

Training arguments on the CLI

--train train network using images in dir
--train_size train size network at end of training
--test_dir TEST_DIR folder containing test data (optional)
--mask_filter MASK_FILTER

end string for masks to run on. use '_seg.npy' for
manual annotations from the GUI. Default: _masks

--diam_mean DIAM_MEAN
mean diameter to resize cells to during training -- if
starting from pretrained models it cannot be changed
from 30.0

--learning_rate LEARNING_RATE
learning rate. Default: 0.2

--weight_decay WEIGHT_DECAY
weight decay. Default: 1e-05

--n_epochs N_EPOCHS number of epochs. Default: 500
--batch_size BATCH_SIZE

batch size. Default: 8
--min_train_masks MIN_TRAIN_MASKS

minimum number of masks a training image must have to
be used. Default: 5

--SGD SGD use SGD
--save_every SAVE_EVERY

number of epochs to skip between saves. Default: 100
--model_name_out MODEL_NAME_OUT

(continues on next page)

28 Chapter 8. Training

cellpose, Release 3.0.7-19-g0ce3653

(continued from previous page)

Name of model to save as, defaults to name describing
model architecture. Model is saved in the folder
specified by --dir in models subfolder.

29

cellpose, Release 3.0.7-19-g0ce3653

30 Chapter 8. Training

CHAPTER

NINE

OPENVINO

OpenVINO is an optional backend for Cellpose which optimizes deep learning inference for Intel Architectures.

It should be installed in the same environment with Cellpose by the following command :

pip install --no-deps openvino

Using openvino_utils.to_openvino, convert PyTorch model to OpenVINO one:

from cellpose.contrib import openvino_utils

model = models.CellposeModel(...)

model = openvino_utils.to_openvino(model)

31

https://github.com/openvinotoolkit/openvino

cellpose, Release 3.0.7-19-g0ce3653

32 Chapter 9. OpenVINO

CHAPTER

TEN

FAQ

Q: What should I set the --flow_threshold/--cell_prob/--diam parameter to?

These parameters should be set experimentally by running Cellpose, viewing the results, and tuning the
parameters to get the best results. The default parameters are set to work well for most images, but may
not be optimal for your images. See Settings for more information.

Q: What accuracy is good enough? Is there a quantitative threshold that should be met before implementing a
model?

Generally speaking you want to meet or exceed the accuracy of a human. You can estimate human accuracy
by labeling the same image twice and evaluating accuracy metrics. In practice human accuracy is often
lower than you would expect. You can see our results from this analysis in our Cellpose 2 paper.

Some additional information on precision and accuracy can be found here.

Q: How do I download the pretrained models?

The models will be downloaded automatically from the website when you first run a pretrained model in
cellpose. If you are having issues with the downloads, you can download them from this google drive zip
file, unzip the file and put the models in your home directory under the path .cellpose/models/, e.g.
on Windows this would be C:/Users/YOUR_USERNAME/.cellpose/models/ or on Linux this would
be /home/YOUR_USERNAME/.cellpose/models/, so /home/YOUR_USERNAME/.cellpose/models/
cyto_0 is the full path to one model for example. If you cannot access google drive, the models are also
available on baidu: https://pan.baidu.com/s/1CARpRGCBHIYaz7KeyoX-fg thanks to @qixinbo!

Q: How can I use cellpose to recognize different types of cells in the same image?

Cellpose does not natively support recognizing different types of cells (aka ‘multiclass segmentation’).
However, you can train individual models that are capable of recognizing only a given cell type at a time
and run Cellpose multiple times on the same image. With sufficient training, the result will be two sets of
outputs that could be combined in post-processing to identify the different cell types.

Q: Why does the PNG mask file look dim at the top and light at the bottom? I can’t see the cell masks.

This is expected and intended behavior, although it is dependent on the image viewer used to view the
mask file. The mask file is saved with each pixel as background (represented by a 0), or as a cell label
(represented by the cell label number). The gradient is produced because each cell label is unique and
monotonically increasing from top to bottom.

You can use different look up tables (LUTs) in ImageJ to view the resulting masks or threshold everything
above zero to get everything that cellpose detects. Image post processing is outside the scope of cellpose,
but you can find additional help at https://forum.image.sc/tag/cellpose.

Q: The Cellpose GUI is unresponsive/frozen. Is it broken?

Cellpose is likely not broken; it is just busy. Currently, the GUI cannot receive input while computing
segmentation. Cellpose is a fairly computationally intensive program and may take a long time to run,

33

https://www.biorxiv.org/content/10.1101/2022.04.01.486764v1
https://forum.image.sc/t/how-to-interpret-cellposes-average-precision-model-evaluation-value/75231/3
https://www.cellpose.org/
https://drive.google.com/file/d/1zHGFYCqRCTwTPwgEUMNZu0EhQy2zaovg/view?usp=sharing
https://drive.google.com/file/d/1zHGFYCqRCTwTPwgEUMNZu0EhQy2zaovg/view?usp=sharing
https://pan.baidu.com/s/1CARpRGCBHIYaz7KeyoX-fg
https://forum.image.sc/tag/cellpose

cellpose, Release 3.0.7-19-g0ce3653

depending on computer hardware specifications. Cellpose will take a long time to run on large images.
Using hardware with a faster CPU and with more available memory will speed up the process. Using a
GPU will also speed up the process, especially if you are training with a large dataset.

34 Chapter 10. FAQ

CHAPTER

ELEVEN

IN A NOTEBOOK

See Settings for more information on run settings.

import numpy as np
import matplotlib.pyplot as plt
from cellpose import models, io
from cellpose.io import imread

io.logger_setup()

model_type='cyto' or 'nuclei' or 'cyto2' or 'cyto3'
model = models.Cellpose(model_type='cyto3')

list of files
PUT PATH TO YOUR FILES HERE!
files = ['/media/carsen/DATA1/TIFFS/onechan.tif']

imgs = [imread(f) for f in files]
nimg = len(imgs)

define CHANNELS to run segementation on
grayscale=0, R=1, G=2, B=3
channels = [cytoplasm, nucleus]
if NUCLEUS channel does not exist, set the second channel to 0
channels = [[0,0]]
IF ALL YOUR IMAGES ARE THE SAME TYPE, you can give a list with 2 elements
channels = [0,0] # IF YOU HAVE GRAYSCALE
channels = [2,3] # IF YOU HAVE G=cytoplasm and B=nucleus
channels = [2,1] # IF YOU HAVE G=cytoplasm and R=nucleus

if diameter is set to None, the size of the cells is estimated on a per image basis
you can set the average cell `diameter` in pixels yourself (recommended)
diameter can be a list or a single number for all images

masks, flows, styles, diams = model.eval(imgs, diameter=None, channels=channels)

or to run one of the other models, or a custom model, specify a CellposeModel
model = models.CellposeModel(model_type='livecell_cp3')

masks, flows, styles = model.eval(imgs, diameter=30, channels=[0,0])

35

cellpose, Release 3.0.7-19-g0ce3653

See example notebook at run_cellpose.ipynb.

36 Chapter 11. In a notebook

https://nbviewer.jupyter.org/github/MouseLand/cellpose/blob/master/notebooks/run_cellpose.ipynb

CHAPTER

TWELVE

COMMAND LINE

The full list of options and what they do can be found on the Command Line Interface (CLI) documentation page:
Cellpose CLI . A description of the most important settings can be found on the Settings page.

12.1 Command Line Usage

Run python -m cellpose and specify parameters as below. For instance to run on a folder with images where
cytoplasm is green and nucleus is blue and save the output as a png (using default diameter 30):

python -m cellpose --dir ~/images_cyto/test/ --pretrained_model cyto --chan 2 --chan2 3 -
→˓-save_png

You can specify the diameter for all the images or set to 0 if you want the algorithm to estimate it on an image by image
basis. Here is how to run on nuclear data (grayscale) where the diameter is automatically estimated:

python -m cellpose --dir ~/images_nuclei/test/ --pretrained_model nuclei --diameter 0. --
→˓save_png

Warning: The path given to --dir must be an absolute path.

37

cellpose, Release 3.0.7-19-g0ce3653

38 Chapter 12. Command line

CHAPTER

THIRTEEN

CELLPOSE API GUIDE

13.1 Cellpose class

class cellpose.models.Cellpose(gpu=False, model_type='cyto3', nchan=2, device=None,
backbone='default')

Main model which combines SizeModel and CellposeModel.

Parameters

• gpu (bool, optional) – Whether or not to use GPU, will check if GPU available. Defaults
to False.

• model_type (str, optional) – Model type. “cyto”=cytoplasm model; “nuclei”=nucleus
model; “cyto2”=cytoplasm model with additional user images; “cyto3”=super-generalist
model; Defaults to “cyto3”.

• device (torch device, optional) – Device used for model running / training.
Overrides gpu input. Recommended if you want to use a specific GPU (e.g.
torch.device(“cuda:1”)). Defaults to None.

device

Device used for model running / training.

Type
torch device

gpu

Flag indicating if GPU is used.

Type
bool

diam_mean

Mean diameter for cytoplasm model.

Type
float

cp

CellposeModel instance.

Type
CellposeModel

39

cellpose, Release 3.0.7-19-g0ce3653

pretrained_size

Pretrained size model path.

Type
str

sz

SizeModel instance.

Type
SizeModel

eval(x, batch_size=8, channels=[0, 0], channel_axis=None, invert=False, normalize=True, diameter=30.0,
do_3D=False, find_masks=True, **kwargs)

Run cellpose size model and mask model and get masks.

Parameters

• x (list or array) – List or array of images. Can be list of 2D/3D images, or array of
2D/3D images, or 4D image array.

• batch_size (int, optional) – Number of 224x224 patches to run simultaneously on
the GPU. Can make smaller or bigger depending on GPU memory usage. Defaults to 8.

• channels (list, optional) – List of channels, either of length 2 or of length number of
images by 2. First element of list is the channel to segment (0=grayscale, 1=red, 2=green,
3=blue). Second element of list is the optional nuclear channel (0=none, 1=red, 2=green,
3=blue). For instance, to segment grayscale images, input [0,0]. To segment images with
cells in green and nuclei in blue, input [2,3]. To segment one grayscale image and one
image with cells in green and nuclei in blue, input [[0,0], [2,3]]. Defaults to [0,0].

• channel_axis (int, optional) – If None, channels dimension is attempted to be au-
tomatically determined. Defaults to None.

• invert (bool, optional) – Invert image pixel intensity before running network (if True,
image is also normalized). Defaults to False.

• normalize (bool, optional) – If True, normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel; can also pass dictionary of pa-
rameters (see CellposeModel for details). Defaults to True.

• diameter (float, optional) – If set to None, then diameter is automatically estimated
if size model is loaded. Defaults to 30..

• do_3D (bool, optional) – Set to True to run 3D segmentation on 4D image input. De-
faults to False.

Returns

tuple containing

• masks (list of 2D arrays or single 3D array): Labelled image, where 0=no masks;
1,2,. . . =mask labels.

• flows (list of lists 2D arrays or list of 3D arrays):

– flows[k][0] = XY flow in HSV 0-255

– flows[k][1] = XY flows at each pixel

– flows[k][2] = cell probability (if > cellprob_threshold, pixel used for dynamics)

– flows[k][3] = final pixel locations after Euler integration

40 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

• styles (list of 1D arrays of length 256 or single 1D array): Style vector summarizing each
image, also used to estimate size of objects in image.

• diams (list of diameters or float): List of diameters or float (if do_3D=True).

13.2 CellposeModel

class cellpose.models.CellposeModel(gpu=False, pretrained_model=False, model_type=None,
diam_mean=30.0, device=None, nchan=2, backbone='default')

Class representing a Cellpose model.

diam_mean

Mean “diameter” value for the model.

Type
float

builtin

Whether the model is a built-in model or not.

Type
bool

device

Device used for model running / training.

Type
torch device

mkldnn

MKLDNN flag for the model.

Type
None or bool

nchan

Number of channels used as input to the network.

Type
int

nclasses

Number of classes in the model.

Type
int

nbase

List of base values for the model.

Type
list

net

Cellpose network.

Type
CPnet

13.2. CellposeModel 41

cellpose, Release 3.0.7-19-g0ce3653

pretrained_model

Full path to pretrained cellpose model(s).

Type
str or list of strings

diam_labels

Diameter labels of the model.

Type
numpy array

net_type

Type of the network.

Type
str

__init__(self, gpu=False, pretrained_model=False, model_type=None, diam_mean=30., device=None,
nchan=2)

Initialize the CellposeModel.

eval(self, x, batch_size=8, resample=True, channels=None, channel_axis=None, z_axis=None,
normalize=True, invert=False, rescale=None, diameter=None, flow_threshold=0.4,
cellprob_threshold=0.0, do_3D=False, anisotropy=None, stitch_threshold=0.0, min_size=15,
niter=None, augment=False, tile=True, tile_overlap=0.1, bsize=224, interp=True,
compute_masks=True, progress=None)
Segment list of images x, or 4D array - Z x nchan x Y x X.

eval(x, batch_size=8, resample=True, channels=None, channel_axis=None, z_axis=None, normalize=True,
invert=False, rescale=None, diameter=None, flow_threshold=0.4, cellprob_threshold=0.0,
do_3D=False, anisotropy=None, stitch_threshold=0.0, min_size=15, niter=None, augment=False,
tile=True, tile_overlap=0.1, bsize=224, interp=True, compute_masks=True, progress=None)
segment list of images x, or 4D array - Z x nchan x Y x X

Parameters

• x (list, np.ndarry) – can be list of 2D/3D/4D images, or array of 2D/3D/4D
images

• batch_size (int, optional) – number of 224x224 patches to run simultane-
ously on the GPU (can make smaller or bigger depending on GPU memory usage).
Defaults to 8.

• resample (bool, optional) – run dynamics at original image size (will be
slower but create more accurate boundaries). Defaults to True.

• channels (list, optional) – list of channels, either of length 2 or of length
number of images by 2. First element of list is the channel to segment (0=grayscale,
1=red, 2=green, 3=blue). Second element of list is the optional nuclear channel
(0=none, 1=red, 2=green, 3=blue). For instance, to segment grayscale images, input
[0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To
segment one grayscale image and one image with cells in green and nuclei in blue,
input [[0,0], [2,3]]. Defaults to None.

• channel_axis (int, optional) – channel axis in element of list x, or of
np.ndarray x. if None, channels dimension is attempted to be automatically de-
termined. Defaults to None.

42 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

• z_axis (int, optional) – z axis in element of list x, or of np.ndarray x. if None,
z dimension is attempted to be automatically determined. Defaults to None.

• normalize (bool, optional) – if True, normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel; can also pass dictionary
of parameters (all keys are optional, default values shown):

– ”lowhigh”=None : pass in normalization values for 0.0 and 1.0 as list [low,
high] (if not None, all following parameters ignored)

– ”sharpen”=0 ; sharpen image with high pass filter, recommended to be 1/4-1/8
diameter of cells in pixels

– ”normalize”=True ; run normalization (if False, all following parameters ig-
nored)

– ”percentile”=None : pass in percentiles to use as list [perc_low, perc_high]

– ”tile_norm”=0 ; compute normalization in tiles across image to brighten dark
areas, to turn on set to window size in pixels (e.g. 100)

– ”norm3D”=False ; compute normalization across entire z-stack rather than
plane-by-plane in stitching mode.

Defaults to True.

• invert (bool, optional) – invert image pixel intensity before running network.
Defaults to False.

• rescale (float, optional) – resize factor for each image, if None, set to 1.0;
(only used if diameter is None). Defaults to None.

• diameter (float, optional) – diameter for each image, if diameter is None, set
to diam_mean or diam_train if available. Defaults to None.

• flow_threshold (float, optional) – flow error threshold (all cells with errors
below threshold are kept) (not used for 3D). Defaults to 0.4.

• cellprob_threshold (float, optional) – all pixels with value above thresh-
old kept for masks, decrease to find more and larger masks. Defaults to 0.0.

• do_3D (bool, optional) – set to True to run 3D segmentation on 3D/4D image
input. Defaults to False.

• anisotropy (float, optional) – for 3D segmentation, optional rescaling factor
(e.g. set to 2.0 if Z is sampled half as dense as X or Y). Defaults to None.

• stitch_threshold (float, optional) – if stitch_threshold>0.0 and not
do_3D, masks are stitched in 3D to return volume segmentation. Defaults to 0.0.

• min_size (int, optional) – all ROIs below this size, in pixels, will be dis-
carded. Defaults to 15.

• niter (int, optional) – number of iterations for dynamics computation. if
None, it is set proportional to the diameter. Defaults to None.

• augment (bool, optional) – tiles image with overlapping tiles and flips over-
lapped regions to augment. Defaults to False.

• tile (bool, optional) – tiles image to ensure GPU/CPU memory usage limited
(recommended). Defaults to True.

• tile_overlap (float, optional) – fraction of overlap of tiles when computing
flows. Defaults to 0.1.

13.2. CellposeModel 43

cellpose, Release 3.0.7-19-g0ce3653

• bsize (int, optional) – block size for tiles, recommended to keep at 224, like
in training. Defaults to 224.

• interp (bool, optional) – interpolate during 2D dynamics (not available in
3D) . Defaults to True.

• compute_masks (bool, optional) – Whether or not to compute dynamics and
return masks. This is set to False when retrieving the styles for the size model.
Defaults to True.

• progress (QProgressBar, optional) – pyqt progress bar. Defaults to None.

Returns

• masks (list, np.ndarray): labelled image(s), where 0=no masks; 1,2,. . . =mask labels

• flows (list): list of lists: flows[k][0] = XY flow in HSV 0-255; flows[k][1] = XY(Z)
flows at each pixel; flows[k][2] = cell probability (if > cellprob_threshold, pixel
used for dynamics); flows[k][3] = final pixel locations after Euler integration

• styles (list, np.ndarray): style vector summarizing each image of size 256.

Return type
A tuple containing

13.3 CellposeDenoiseModel

class cellpose.denoise.CellposeDenoiseModel(gpu=False, pretrained_model=False, model_type=None,
restore_type='denoise_cyto3', chan2_restore=False,
device=None)

model to run Cellpose and Image restoration

eval(x, batch_size=8, channels=None, channel_axis=None, z_axis=None, normalize=True, rescale=None,
diameter=None, tile=True, tile_overlap=0.1, augment=False, resample=True, invert=False,
flow_threshold=0.4, cellprob_threshold=0.0, do_3D=False, anisotropy=None, stitch_threshold=0.0,
min_size=15, niter=None, interp=True)
Restore array or list of images using the image restoration model, and then segment.

Parameters

• x (list, np.ndarry) – can be list of 2D/3D/4D images, or array of 2D/3D/4D
images

• batch_size (int, optional) – number of 224x224 patches to run simultane-
ously on the GPU (can make smaller or bigger depending on GPU memory usage).
Defaults to 8.

• channels (list, optional) – list of channels, either of length 2 or of length
number of images by 2. First element of list is the channel to segment (0=grayscale,
1=red, 2=green, 3=blue). Second element of list is the optional nuclear channel
(0=none, 1=red, 2=green, 3=blue). For instance, to segment grayscale images, input
[0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To
segment one grayscale image and one image with cells in green and nuclei in blue,
input [[0,0], [2,3]]. Defaults to None.

• channel_axis (int, optional) – channel axis in element of list x, or of
np.ndarray x. if None, channels dimension is attempted to be automatically de-
termined. Defaults to None.

44 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

• z_axis (int, optional) – z axis in element of list x, or of np.ndarray x. if None,
z dimension is attempted to be automatically determined. Defaults to None.

• normalize (bool, optional) – if True, normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel; can also pass dictionary
of parameters (all keys are optional, default values shown):

– ”lowhigh”=None : pass in normalization values for 0.0 and 1.0 as list [low,
high] (if not None, all following parameters ignored)

– ”sharpen”=0 ; sharpen image with high pass filter, recommended to be 1/4-1/8
diameter of cells in pixels

– ”normalize”=True ; run normalization (if False, all following parameters ig-
nored)

– ”percentile”=None : pass in percentiles to use as list [perc_low, perc_high]

– ”tile_norm”=0 ; compute normalization in tiles across image to brighten dark
areas, to turn on set to window size in pixels (e.g. 100)

– ”norm3D”=False ; compute normalization across entire z-stack rather than
plane-by-plane in stitching mode.

Defaults to True.

• rescale (float, optional) – resize factor for each image, if None, set to 1.0;
(only used if diameter is None). Defaults to None.

• diameter (float, optional) – diameter for each image, if diameter is None, set
to diam_mean or diam_train if available. Defaults to None.

• tile (bool, optional) – tiles image to ensure GPU/CPU memory usage limited
(recommended). Defaults to True.

• tile_overlap (float, optional) – fraction of overlap of tiles when computing
flows. Defaults to 0.1.

• augment (bool, optional) – augment tiles by flipping and averaging for seg-
mentation. Defaults to False.

• resample (bool, optional) – run dynamics at original image size (will be
slower but create more accurate boundaries). Defaults to True.

• invert (bool, optional) – invert image pixel intensity before running network.
Defaults to False.

• flow_threshold (float, optional) – flow error threshold (all cells with errors
below threshold are kept) (not used for 3D). Defaults to 0.4.

• cellprob_threshold (float, optional) – all pixels with value above thresh-
old kept for masks, decrease to find more and larger masks. Defaults to 0.0.

• do_3D (bool, optional) – set to True to run 3D segmentation on 3D/4D image
input. Defaults to False.

• anisotropy (float, optional) – for 3D segmentation, optional rescaling factor
(e.g. set to 2.0 if Z is sampled half as dense as X or Y). Defaults to None.

• stitch_threshold (float, optional) – if stitch_threshold>0.0 and not
do_3D, masks are stitched in 3D to return volume segmentation. Defaults to 0.0.

• min_size (int, optional) – all ROIs below this size, in pixels, will be dis-
carded. Defaults to 15.

13.3. CellposeDenoiseModel 45

cellpose, Release 3.0.7-19-g0ce3653

• niter (int, optional) – number of iterations for dynamics computation. if
None, it is set proportional to the diameter. Defaults to None.

• interp (bool, optional) – interpolate during 2D dynamics (not available in
3D) . Defaults to True.

Returns
labelled image(s), where 0=no masks; 1,2,. . . =mask labels flows (list): list of lists:
flows[k][0] = XY flow in HSV 0-255; flows[k][1] = XY(Z) flows at each pixel;
flows[k][2] = cell probability (if > cellprob_threshold, pixel used for dynamics);
flows[k][3] = final pixel locations after Euler integration styles (list, np.ndarray): style
vector summarizing each image of size 256. imgs (list of 2D/3D arrays): Restored im-
ages

Return type
masks (list, np.ndarray)

13.4 DenoiseModel

class cellpose.denoise.DenoiseModel(gpu=False, pretrained_model=False, nchan=1, model_type=None,
chan2=False, diam_mean=30.0, device=None)

DenoiseModel class for denoising images using Cellpose denoising model.
Parameters

• gpu (bool, optional) – Whether to use GPU for computation. Defaults to False.

• pretrained_model (bool or str or Path, optional) – Pretrained model to
use for denoising. Can be a string or path. Defaults to False.

• nchan (int, optional) – Number of channels in the input images, all Cellpose 3
models were trained with nchan=1. Defaults to 1.

• model_type (str, optional) – Type of pretrained model to use (“denoise_cyto3”,
“deblur_cyto3”, “upsample_cyto3”, . . .). Defaults to None.

• chan2 (bool, optional) – Whether to use a separate model for the second channel.
Defaults to False.

• diam_mean (float, optional) – Mean diameter of the objects in the images. De-
faults to 30.0.

• device (torch.device, optional) – Device to use for computation. Defaults to
None.

nchan

Number of channels in the input images.

Type
int

diam_mean

Mean diameter of the objects in the images.

Type
float

net

Cellpose network for denoising.

46 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

Type
CPnet

pretrained_model

Pretrained model path to use for denoising.

Type
bool or str or Path

net_chan2

Cellpose network for the second channel, if applicable.

Type
CPnet or None

net_type

Type of the denoising network.

Type
str

eval(x, batch_size=8, channels=None, channel_axis=None, z_axis=None,

normalize=True, rescale=None, diameter=None, tile=True, tile_overlap=0.1)

Denoise array or list of images using the denoising model.

_eval(net, x, normalize=True, rescale=None, diameter=None, tile=True,

tile_overlap=0.1)

Run denoising model on a single channel.

eval(x, batch_size=8, channels=None, channel_axis=None, z_axis=None, normalize=True, rescale=None,
diameter=None, tile=True, tile_overlap=0.1)
Restore array or list of images using the image restoration model.

Parameters

• x (list, np.ndarry) – can be list of 2D/3D/4D images, or array of 2D/3D/4D
images

• batch_size (int, optional) – number of 224x224 patches to run simultane-
ously on the GPU (can make smaller or bigger depending on GPU memory usage).
Defaults to 8.

• channels (list, optional) – list of channels, either of length 2 or of length
number of images by 2. First element of list is the channel to segment (0=grayscale,
1=red, 2=green, 3=blue). Second element of list is the optional nuclear channel
(0=none, 1=red, 2=green, 3=blue). For instance, to segment grayscale images, input
[0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To
segment one grayscale image and one image with cells in green and nuclei in blue,
input [[0,0], [2,3]]. Defaults to None.

• channel_axis (int, optional) – channel axis in element of list x, or of
np.ndarray x. if None, channels dimension is attempted to be automatically de-
termined. Defaults to None.

• z_axis (int, optional) – z axis in element of list x, or of np.ndarray x. if None,
z dimension is attempted to be automatically determined. Defaults to None.

13.4. DenoiseModel 47

cellpose, Release 3.0.7-19-g0ce3653

• normalize (bool, optional) – if True, normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel; can also pass dictionary
of parameters (all keys are optional, default values shown):

– ”lowhigh”=None : pass in normalization values for 0.0 and 1.0 as list [low,
high] (if not None, all following parameters ignored)

– ”sharpen”=0 ; sharpen image with high pass filter, recommended to be 1/4-1/8
diameter of cells in pixels

– ”normalize”=True ; run normalization (if False, all following parameters ig-
nored)

– ”percentile”=None : pass in percentiles to use as list [perc_low, perc_high]

– ”tile_norm”=0 ; compute normalization in tiles across image to brighten dark
areas, to turn on set to window size in pixels (e.g. 100)

– ”norm3D”=False ; compute normalization across entire z-stack rather than
plane-by-plane in stitching mode.

Defaults to True.

• rescale (float, optional) – resize factor for each image, if None, set to 1.0;
(only used if diameter is None). Defaults to None.

• diameter (float, optional) – diameter for each image, if diameter is None, set
to diam_mean or diam_train if available. Defaults to None.

• tile (bool, optional) – tiles image to ensure GPU/CPU memory usage limited
(recommended). Defaults to True.

• tile_overlap (float, optional) – fraction of overlap of tiles when computing
flows. Defaults to 0.1.

Returns
Restored images

Return type
imgs (list of 2D/3D arrays)

13.5 SizeModel

class cellpose.models.SizeModel(cp_model, device=None, pretrained_size=None, **kwargs)
Linear regression model for determining the size of objects in image used to rescale before input to cp_model.
Uses styles from cp_model.

pretrained_size

Path to pretrained size model.

Type
str

cp

Model from which to get styles.

Type
UnetModel or CellposeModel

48 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

device

Device used for model running / training (torch.device(“cuda”) or torch.device(“cpu”)), overrides gpu
input, recommended if you want to use a specific GPU (e.g. torch.device(“cuda:1”)).

Type
torch device

diam_mean

Mean diameter of objects.

Type
float

eval(self, x, channels=None, channel_axis=None, normalize=True, invert=False,

augment=False, tile=True, batch_size=8, progress=None, interp=True):

Use images x to produce style or use style input to predict size of objects in image.

Raises
ValueError – If no pretrained cellpose model is specified, cannot compute size.

eval(x, channels=None, channel_axis=None, normalize=True, invert=False, augment=False, tile=True,
batch_size=8, progress=None)
Use images x to produce style or use style input to predict size of objects in image.

Object size estimation is done in two steps: 1. Use a linear regression model to predict size from style in
image. 2. Resize image to predicted size and run CellposeModel to get output masks.

Take the median object size of the predicted masks as the final predicted size.

Parameters

• x (list, np.ndarry) – can be list of 2D/3D/4D images, or array of 2D/3D/4D
images

• channels (list, optional) – list of channels, either of length 2 or of length
number of images by 2. First element of list is the channel to segment (0=grayscale,
1=red, 2=green, 3=blue). Second element of list is the optional nuclear channel
(0=none, 1=red, 2=green, 3=blue). For instance, to segment grayscale images, input
[0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To
segment one grayscale image and one image with cells in green and nuclei in blue,
input [[0,0], [2,3]]. Defaults to None.

• channel_axis (int, optional) – channel axis in element of list x, or of
np.ndarray x. if None, channels dimension is attempted to be automatically de-
termined. Defaults to None.

• normalize (bool, optional) – if True, normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel; can also pass dictionary
of parameters (all keys are optional, default values shown):

– ”lowhigh”=None : pass in normalization values for 0.0 and 1.0 as list [low,
high] (if not None, all following parameters ignored)

– ”sharpen”=0 ; sharpen image with high pass filter, recommended to be 1/4-1/8
diameter of cells in pixels

– ”normalize”=True ; run normalization (if False, all following parameters ig-
nored)

– ”percentile”=None : pass in percentiles to use as list [perc_low, perc_high]

13.5. SizeModel 49

cellpose, Release 3.0.7-19-g0ce3653

– ”tile_norm”=0 ; compute normalization in tiles across image to brighten dark
areas, to turn on set to window size in pixels (e.g. 100)

– ”norm3D”=False ; compute normalization across entire z-stack rather than
plane-by-plane in stitching mode.

Defaults to True.

• invert (bool, optional) – Invert image pixel intensity before running network
(if True, image is also normalized). Defaults to False.

• augment (bool, optional) – tiles image with overlapping tiles and flips over-
lapped regions to augment. Defaults to False.

• tile (bool, optional) – tiles image to ensure GPU/CPU memory usage limited
(recommended). Defaults to True.

• batch_size (int, optional) – number of 224x224 patches to run simultane-
ously on the GPU (can make smaller or bigger depending on GPU memory usage).
Defaults to 8.

• progress (QProgressBar, optional) – pyqt progress bar. Defaults to None.

Returns

• diam (np.ndarray): Final estimated diameters from images x or styles style after
running both steps.

• diam_style (np.ndarray): Estimated diameters from style alone.

Return type
A tuple containing

13.6 Training

cellpose.train.train_seg(net, train_data=None, train_labels=None, train_files=None,
train_labels_files=None, train_probs=None, test_data=None, test_labels=None,
test_files=None, test_labels_files=None, test_probs=None, load_files=True,
batch_size=8, learning_rate=0.005, n_epochs=2000, weight_decay=1e-05,
momentum=0.9, SGD=False, channels=None, channel_axis=None, rgb=False,
normalize=True, compute_flows=False, save_path=None, save_every=100,
nimg_per_epoch=None, nimg_test_per_epoch=None, rescale=True,
scale_range=None, bsize=224, min_train_masks=5, model_name=None)

Train the network with images for segmentation.
Parameters

• net (object) – The network model to train.

• train_data (List[np.ndarray], optional) – List of arrays (2D or 3D) - images
for training. Defaults to None.

• train_labels (List[np.ndarray], optional) – List of arrays (2D or 3D) - labels
for train_data, where 0=no masks; 1,2,. . . =mask labels. Defaults to None.

• train_files (List[str], optional) – List of strings - file names for images in
train_data (to save flows for future runs). Defaults to None.

• train_labels_files (list or None) – List of training label file paths. Defaults to
None.

50 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

• train_probs (List[float], optional) – List of floats - probabilities for each im-
age to be selected during training. Defaults to None.

• test_data (List[np.ndarray], optional) – List of arrays (2D or 3D) - images
for testing. Defaults to None.

• test_labels (List[np.ndarray], optional) – List of arrays (2D or 3D) - labels
for test_data, where 0=no masks; 1,2,. . . =mask labels. Defaults to None.

• test_files (List[str], optional) – List of strings - file names for images in
test_data (to save flows for future runs). Defaults to None.

• test_labels_files (list or None) – List of test label file paths. Defaults to None.

• test_probs (List[float], optional) – List of floats - probabilities for each image
to be selected during testing. Defaults to None.

• load_files (bool, optional) – Boolean - whether to load images and labels from
files. Defaults to True.

• batch_size (int, optional) – Integer - number of patches to run simultaneously on
the GPU. Defaults to 8.

• learning_rate (float or List[float], optional) – Float or list/np.ndarray -
learning rate for training. Defaults to 0.005.

• n_epochs (int, optional) – Integer - number of times to go through the whole train-
ing set during training. Defaults to 2000.

• weight_decay (float, optional) – Float - weight decay for the optimizer. Defaults
to 1e-5.

• momentum (float, optional) – Float - momentum for the optimizer. Defaults to 0.9.

• SGD (bool, optional) – Boolean - whether to use SGD as optimization instead of
RAdam. Defaults to False.

• channels (List[int], optional) – List of ints - channels to use for training. De-
faults to None.

• channel_axis (int, optional) – Integer - axis of the channel dimension in the input
data. Defaults to None.

• normalize (bool or dict, optional) – Boolean or dictionary - whether to nor-
malize the data. Defaults to True.

• compute_flows (bool, optional) – Boolean - whether to compute flows during
training. Defaults to False.

• save_path (str, optional) – String - where to save the trained model. Defaults to
None.

• save_every (int, optional) – Integer - save the network every [save_every] epochs.
Defaults to 100.

• nimg_per_epoch (int, optional) – Integer - minimum number of images to train
on per epoch. Defaults to None.

• nimg_test_per_epoch (int, optional) – Integer - minimum number of images to
test on per epoch. Defaults to None.

• rescale (bool, optional) – Boolean - whether or not to rescale images during train-
ing. Defaults to True.

13.6. Training 51

cellpose, Release 3.0.7-19-g0ce3653

• min_train_masks (int, optional) – Integer - minimum number of masks an image
must have to use in the training set. Defaults to 5.

• model_name (str, optional) – String - name of the network. Defaults to None.

Returns
path to saved model weights

Return type
Path

cellpose.train.train_size(net, pretrained_model, train_data=None, train_labels=None, train_files=None,
train_labels_files=None, train_probs=None, test_data=None, test_labels=None,
test_files=None, test_labels_files=None, test_probs=None, load_files=True,
min_train_masks=5, channels=None, channel_axis=None, rgb=False,
normalize=True, nimg_per_epoch=None, nimg_test_per_epoch=None,
batch_size=64, scale_range=1.0, bsize=512, l2_regularization=1.0,
n_epochs=10)

Train the size model.
Parameters

• net (object) – The neural network model.

• pretrained_model (str) – The path to the pretrained model.

• train_data (numpy.ndarray, optional) – The training data. Defaults to None.

• train_labels (numpy.ndarray, optional) – The training labels. Defaults to
None.

• train_files (list, optional) – The training file paths. Defaults to None.

• train_labels_files (list, optional) – The training label file paths. Defaults to
None.

• train_probs (numpy.ndarray, optional) – The training probabilities. Defaults to
None.

• test_data (numpy.ndarray, optional) – The test data. Defaults to None.

• test_labels (numpy.ndarray, optional) – The test labels. Defaults to None.

• test_files (list, optional) – The test file paths. Defaults to None.

• test_labels_files (list, optional) – The test label file paths. Defaults to None.

• test_probs (numpy.ndarray, optional) – The test probabilities. Defaults to None.

• load_files (bool, optional) – Whether to load files. Defaults to True.

• min_train_masks (int, optional) – The minimum number of training masks. De-
faults to 5.

• channels (list, optional) – The channels. Defaults to None.

• channel_axis (int, optional) – The channel axis. Defaults to None.

• normalize (bool or dict, optional) – Whether to normalize the data. Defaults
to True.

• nimg_per_epoch (int, optional) – The number of images per epoch. Defaults to
None.

• nimg_test_per_epoch (int, optional) – The number of test images per epoch.
Defaults to None.

52 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

• batch_size (int, optional) – The batch size. Defaults to 64.

• l2_regularization (float, optional) – The L2 regularization factor. Defaults to
1.0.

• n_epochs (int, optional) – The number of epochs. Defaults to 10.

Returns
The trained size model parameters.

Return type
dict

13.7 Metrics

Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.

cellpose.metrics.aggregated_jaccard_index(masks_true, masks_pred)
AJI = intersection of all matched masks / union of all masks

Parameters

• masks_true (list of np.ndarrays (int) or np.ndarray (int)) – where
0=NO masks; 1,2. . . are mask labels

• masks_pred (list of np.ndarrays (int) or np.ndarray (int)) –
np.ndarray (int) where 0=NO masks; 1,2. . . are mask labels

Returns
aggregated jaccard index for each set of masks

Return type
aji (float)

cellpose.metrics.average_precision(masks_true, masks_pred, threshold=[0.5, 0.75, 0.9])
Average precision estimation: AP = TP / (TP + FP + FN)

This function is based heavily on the fast stardist matching functions (https://github.com/mpicbg-csbd/stardist/
blob/master/stardist/matching.py)

Parameters

• masks_true (list of np.ndarrays (int) or np.ndarray (int)) – where
0=NO masks; 1,2. . . are mask labels

• masks_pred (list of np.ndarrays (int) or np.ndarray (int)) –
np.ndarray (int) where 0=NO masks; 1,2. . . are mask labels

Returns

average precision at thresholds tp (array [len(masks_true) x len(threshold)]):

number of true positives at thresholds

fp (array [len(masks_true) x len(threshold)]):
number of false positives at thresholds

fn (array [len(masks_true) x len(threshold)]):
number of false negatives at thresholds

Return type
ap (array [len(masks_true) x len(threshold)])

13.7. Metrics 53

https://github.com/mpicbg-csbd/stardist/blob/master/stardist/matching.py
https://github.com/mpicbg-csbd/stardist/blob/master/stardist/matching.py

cellpose, Release 3.0.7-19-g0ce3653

cellpose.metrics.boundary_scores(masks_true, masks_pred, scales)
Calculate boundary precision, recall, and F-score.

Parameters

• masks_true (list) – List of true masks.

• masks_pred (list) – List of predicted masks.

• scales (list) – List of scales.

Returns
A tuple containing precision, recall, and F-score arrays.

Return type
tuple

cellpose.metrics.flow_error(maski, dP_net, device=None)
Error in flows from predicted masks vs flows predicted by network run on image.

This function serves to benchmark the quality of masks. It works as follows: 1. The predicted masks are used to
create a flow diagram. 2. The mask-flows are compared to the flows that the network predicted.

If there is a discrepancy between the flows, it suggests that the mask is incorrect. Masks with flow_errors greater
than 0.4 are discarded by default. This setting can be changed in Cellpose.eval or CellposeModel.eval.

Parameters

• maski (np.ndarray, int) – Masks produced from running dynamics on dP_net,
where 0=NO masks; 1,2. . . are mask labels.

• dP_net (np.ndarray, float) – ND flows where dP_net.shape[1:] = maski.shape.

Returns
Mean squared error between predicted flows and flows from masks. dP_masks (np.ndarray,
float): ND flows produced from the predicted masks.

Return type
flow_errors (np.ndarray, float)

cellpose.metrics.mask_ious(masks_true, masks_pred)
Return best-matched masks.

13.8 Flows to masks

Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.

cellpose.dynamics.compute_masks(dP, cellprob, p=None, niter=200, cellprob_threshold=0.0,
flow_threshold=0.4, interp=True, do_3D=False, min_size=15,
device=None)

Compute masks using dynamics from dP and cellprob.
Parameters

• dP (numpy.ndarray) – The dynamics flow field array.

• cellprob (numpy.ndarray) – The cell probability array.

• p (numpy.ndarray, optional) – The pixels on which to run dynamics. Defaults to
None

• niter (int, optional) – The number of iterations for mask computation. Defaults
to 200.

54 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

• cellprob_threshold (float, optional) – The threshold for cell probability. De-
faults to 0.0.

• flow_threshold (float, optional) – The threshold for quality control metrics.
Defaults to 0.4.

• interp (bool, optional) – Whether to interpolate during dynamics computation.
Defaults to True.

• do_3D (bool, optional) – Whether to perform mask computation in 3D. Defaults to
False.

• min_size (int, optional) – The minimum size of the masks. Defaults to 15.

• device (str, optional) – The torch device to use for computation. Defaults to None.

Returns
A tuple containing the computed masks and the final pixel locations.

Return type
tuple

cellpose.dynamics.follow_flows(dP, mask=None, niter=200, interp=True, device=None)
Run dynamics to recover masks in 2D or 3D.

Pixels are represented as a meshgrid. Only pixels with non-zero cell-probability are used (as defined by inds).
Parameters

• dP (np.ndarray) – Flows [axis x Ly x Lx] or [axis x Lz x Ly x Lx].

• mask (np.ndarray, optional) – Pixel mask to seed masks. Useful when flows have
low magnitudes.

• niter (int, optional) – Number of iterations of dynamics to run. Default is 200.

• interp (bool, optional) – Interpolate during 2D dynamics (not available in 3D).
Default is True.

• use_gpu (bool, optional) – Use GPU to run interpolated dynamics (faster than
CPU). Default is False.

Returns

• p (np.ndarray): Final locations of each pixel after dynamics; [axis x Ly x Lx] or [axis x
Lz x Ly x Lx].

• inds (np.ndarray): Indices of pixels used for dynamics; [axis x Ly x Lx] or [axis x Lz x
Ly x Lx].

Return type
tuple containing

cellpose.dynamics.get_centers(masks, slices)
Get the centers of the masks and their extents.

Parameters

• masks (ndarray) – The labeled masks.

• slices (ndarray) – The slices of the masks.

Returns

tuple containing

• centers (ndarray): The centers of the masks.

13.8. Flows to masks 55

cellpose, Release 3.0.7-19-g0ce3653

• ext (ndarray): The extents of the masks.

cellpose.dynamics.get_masks(p, iscell=None, rpad=20)
Create masks using pixel convergence after running dynamics.

Makes a histogram of final pixel locations p, initializes masks at peaks of histogram and extends the masks from
the peaks so that they include all pixels with more than 2 final pixels p. Discards masks with flow errors greater
than the threshold.

Parameters

• p (float32, 3D or 4D array) – Final locations of each pixel after dynamics, size
[axis x Ly x Lx] or [axis x Lz x Ly x Lx].

• iscell (bool, 2D or 3D array) – If iscell is not None, set pixels that are iscell
False to stay in their original location.

• rpad (int, optional) – Histogram edge padding. Default is 20.

Returns

Masks with inconsistent flow masks removed,
0=NO masks; 1,2,. . . =mask labels, size [Ly x Lx] or [Lz x Ly x Lx].

Return type
M0 (int, 2D or 3D array)

cellpose.dynamics.labels_to_flows(labels, files=None, device=None, redo_flows=False, niter=None,
return_flows=True)

Converts labels (list of masks or flows) to flows for training model.
Parameters

• labels (list of ND-arrays) – The labels to convert. labels[k] can be 2D or 3D. If
[3 x Ly x Lx], it is assumed that flows were precomputed. Otherwise, labels[k][0] or
labels[k] (if 2D) is used to create flows and cell probabilities.

• files (list of str, optional) – The files to save the flows to. If provided, flows
are saved to files to be reused. Defaults to None.

• device (str, optional) – The device to use for computation. Defaults to None.

• redo_flows (bool, optional) – Whether to recompute the flows. Defaults to False.

• niter (int, optional) – The number of iterations for computing flows. Defaults to
None.

Returns
The flows for training the model. flows[k][0] is labels[k], flows[k][1] is cell distance trans-
form, flows[k][2] is Y flow, flows[k][3] is X flow, and flows[k][4] is heat distribution.

Return type
list of [4 x Ly x Lx] arrays

cellpose.dynamics.map_coordinates(I, yc, xc, Y)
Bilinear interpolation of image “I” in-place with y-coordinates yc and x-coordinates xc to Y.

Parameters

• I (numpy.ndarray) – Input image of shape (C, Ly, Lx).

• yc (numpy.ndarray) – New y-coordinates.

• xc (numpy.ndarray) – New x-coordinates.

• Y (numpy.ndarray) – Output array of shape (C, ni).

56 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

Returns
None

cellpose.dynamics.masks_to_flows(masks, device=None, niter=None)
Convert masks to flows using diffusion from center pixel.

Center of masks where diffusion starts is defined to be the closest pixel to the mean of all pixels that is inside the
mask. Result of diffusion is converted into flows by computing the gradients of the diffusion density map.

Parameters
masks (int, 2D or 3D array) – Labelled masks 0=NO masks; 1,2,. . . =mask labels

Returns

Flows in Y = mu[-2], flows in X = mu[-1].
If masks are 3D, flows in Z = mu[0].

Return type
mu (float, 3D or 4D array)

cellpose.dynamics.masks_to_flows_cpu(masks, device=None, niter=None)
Convert masks to flows using diffusion from center pixel.

Center of masks where diffusion starts is defined to be the closest pixel to the mean of all pixels that is inside the
mask. Result of diffusion is converted into flows by computing the gradients of the diffusion density map.

Parameters
masks (int, 2D or 3D array) – Labelled masks 0=NO masks; 1,2,. . . =mask labels

Returns

tuple containing

• mu (float, 3D or 4D array): Flows in Y = mu[-2], flows in X = mu[-1].
If masks are 3D, flows in Z = mu[0].

• meds (float, 2D or 3D array): cell centers

cellpose.dynamics.masks_to_flows_gpu(masks, device=None, niter=None)
Convert masks to flows using diffusion from center pixel.

Center of masks where diffusion starts is defined using COM.
Parameters

masks (int, 2D or 3D array) – Labelled masks. 0=NO masks; 1,2,. . . =mask labels.

Returns

tuple containing

• mu (float, 3D or 4D array): Flows in Y = mu[-2], flows in X = mu[-1].
If masks are 3D, flows in Z = mu[0].

• meds_p (float, 2D or 3D array): cell centers

cellpose.dynamics.masks_to_flows_gpu_3d(masks, device=None)
Convert masks to flows using diffusion from center pixel.

Parameters
masks (int, 2D or 3D array) – Labelled masks. 0=NO masks; 1,2,. . . =mask labels.

Returns

tuple containing

• mu (float, 3D or 4D array): Flows in Y = mu[-2], flows in X = mu[-1]. If masks are
3D, flows in Z = mu[0].

13.8. Flows to masks 57

cellpose, Release 3.0.7-19-g0ce3653

• mu_c (float, 2D or 3D array): zeros

cellpose.dynamics.remove_bad_flow_masks(masks, flows, threshold=0.4, device=None)
Remove masks which have inconsistent flows.

Uses metrics.flow_error to compute flows from predicted masks and compare flows to predicted flows from the
network. Discards masks with flow errors greater than the threshold.

Parameters

• masks (int, 2D or 3D array) – Labelled masks, 0=NO masks; 1,2,. . . =mask labels,
size [Ly x Lx] or [Lz x Ly x Lx].

• flows (float, 3D or 4D array) – Flows [axis x Ly x Lx] or [axis x Lz x Ly x Lx].

• threshold (float, optional) – Masks with flow error greater than threshold are
discarded. Default is 0.4.

Returns

Masks with inconsistent flow masks removed,
0=NO masks; 1,2,. . . =mask labels, size [Ly x Lx] or [Lz x Ly x Lx].

Return type
masks (int, 2D or 3D array)

cellpose.dynamics.resize_and_compute_masks(dP, cellprob, p=None, niter=200, cellprob_threshold=0.0,
flow_threshold=0.4, interp=True, do_3D=False,
min_size=15, resize=None, device=None)

Compute masks using dynamics from dP and cellprob, and resizes masks if resize is not None.
Parameters

• dP (numpy.ndarray) – The dynamics flow field array.

• cellprob (numpy.ndarray) – The cell probability array.

• p (numpy.ndarray, optional) – The pixels on which to run dynamics. Defaults to
None

• niter (int, optional) – The number of iterations for mask computation. Defaults
to 200.

• cellprob_threshold (float, optional) – The threshold for cell probability. De-
faults to 0.0.

• flow_threshold (float, optional) – The threshold for quality control metrics.
Defaults to 0.4.

• interp (bool, optional) – Whether to interpolate during dynamics computation.
Defaults to True.

• do_3D (bool, optional) – Whether to perform mask computation in 3D. Defaults to
False.

• min_size (int, optional) – The minimum size of the masks. Defaults to 15.

• resize (tuple, optional) – The desired size for resizing the masks. Defaults to
None.

• device (str, optional) – The torch device to use for computation. Defaults to None.

Returns
A tuple containing the computed masks and the final pixel locations.

58 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

Return type
tuple

cellpose.dynamics.steps2D(p, dP, inds, niter)
Run dynamics of pixels to recover masks in 2D.

Euler integration of dynamics dP for niter steps.
Parameters

• p (np.ndarray) – Pixel locations [axis x Ly x Lx] (start at initial meshgrid).

• dP (np.ndarray) – Flows [axis x Ly x Lx].

• inds (np.ndarray) – Non-zero pixels to run dynamics on [npixels x 2].

• niter (int) – Number of iterations of dynamics to run.

Returns
Final locations of each pixel after dynamics.

Return type
np.ndarray

cellpose.dynamics.steps2D_interp(p, dP, niter, device=None)
Run dynamics of pixels to recover masks in 2D, with interpolation between pixel values.

Euler integration of dynamics dP for niter steps.
Parameters

• p (numpy.ndarray) – Array of shape (n_points, 2) representing the initial pixel loca-
tions.

• dP (numpy.ndarray) – Array of shape (2, Ly, Lx) representing the flow field.

• niter (int) – Number of iterations to perform.

• device (torch.device, optional) – Device to use for computation. Defaults to
None.

Returns
Array of shape (n_points, 2) representing the final pixel locations.

Return type
numpy.ndarray

Raises
None –

cellpose.dynamics.steps3D(p, dP, inds, niter)
Run dynamics of pixels to recover masks in 3D.

Euler integration of dynamics dP for niter steps.
Parameters

• p (np.ndarray) – Pixel locations [axis x Lz x Ly x Lx] (start at initial meshgrid).

• dP (np.ndarray) – Flows [axis x Lz x Ly x Lx].

• inds (np.ndarray) – Non-zero pixels to run dynamics on [npixels x 3].

• niter (int) – Number of iterations of dynamics to run.

Returns
Final locations of each pixel after dynamics.

13.8. Flows to masks 59

cellpose, Release 3.0.7-19-g0ce3653

Return type
np.ndarray

13.9 Image transforms

Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.

cellpose.transforms.average_tiles(y, ysub, xsub, Ly, Lx)
Average the results of the network over tiles.

Parameters

• y (float) – Output of cellpose network for each tile. Shape: [ntiles x nclasses x bsize
x bsize]

• ysub (list) – List of arrays with start and end of tiles in Y of length ntiles

• xsub (list) – List of arrays with start and end of tiles in X of length ntiles

• Ly (int) – Size of pre-tiled image in Y (may be larger than original image if image size
is less than bsize)

• Lx (int) – Size of pre-tiled image in X (may be larger than original image if image size
is less than bsize)

Returns
Network output averaged over tiles. Shape: [nclasses x Ly x Lx]

Return type
yf (float32)

cellpose.transforms.convert_image(x, channels, channel_axis=None, z_axis=None, do_3D=False,
nchan=2)

Converts the image to have the z-axis first, channels last, and normalized intensities.
Parameters

• x (numpy.ndarray or torch.Tensor) – The input image.

• channels (list or None) – The list of channels to use (ones-based, 0=gray). If None,
all channels are kept.

• channel_axis (int or None) – The axis of the channels in the input image. If None,
the axis is determined automatically.

• z_axis (int or None) – The axis of the z-dimension in the input image. If None, the
axis is determined automatically.

• do_3D (bool) – Whether to process the image in 3D mode. Defaults to False.

• nchan (int) – The number of channels to keep if the input image has more than nchan
channels.

Returns
The converted image.

Return type
numpy.ndarray

Raises

• ValueError – If the input image has less than two channels and channels are not spec-
ified.

60 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

• ValueError – If the input image is 2D and do_3D is True.

• ValueError – If the input image is 4D and do_3D is False.

cellpose.transforms.gaussian_kernel(sigma, Ly, Lx, device=torch.device)
Generates a 2D Gaussian kernel.

Parameters

• sigma (float) – Standard deviation of the Gaussian distribution.

• Ly (int) – Number of pixels in the y-axis.

• Lx (int) – Number of pixels in the x-axis.

• device (torch.device, optional) – Device to store the kernel tensor. Defaults to
torch.device(“cpu”).

Returns
2D Gaussian kernel tensor.

Return type
torch.Tensor

cellpose.transforms.make_tiles(imgi, bsize=224, augment=False, tile_overlap=0.1)
Make tiles of image to run at test-time.

Parameters

• imgi (np.ndarray) – Array of shape (nchan, Ly, Lx) representing the input image.

• bsize (int, optional) – Size of tiles. Defaults to 224.

• augment (bool, optional) – Whether to flip tiles and set tile_overlap=2. Defaults to
False.

• tile_overlap (float, optional) – Fraction of overlap of tiles. Defaults to 0.1.

Returns

tuple containing

• IMG (np.ndarray): Array of shape (ntiles, nchan, bsize, bsize) representing the tiles.

• ysub (list): List of arrays with start and end of tiles in Y of length ntiles.

• xsub (list): List of arrays with start and end of tiles in X of length ntiles.

• Ly (int): Height of the input image.

• Lx (int): Width of the input image.

cellpose.transforms.move_axis(img, m_axis=-1, first=True)
move axis m_axis to first or last position

cellpose.transforms.move_min_dim(img, force=False)
Move the minimum dimension last as channels if it is less than 10 or force is True.

Parameters

• img (ndarray) – The input image.

• force (bool, optional) – If True, the minimum dimension will always be moved.
Defaults to False.

Returns
The image with the minimum dimension moved to the last axis as channels.

13.9. Image transforms 61

cellpose, Release 3.0.7-19-g0ce3653

Return type
ndarray

cellpose.transforms.normalize99(Y, lower=1, upper=99, copy=True)
Normalize the image so that 0.0 corresponds to the 1st percentile and 1.0 corresponds to the 99th percentile.

Parameters

• Y (ndarray) – The input image.

• lower (int, optional) – The lower percentile. Defaults to 1.

• upper (int, optional) – The upper percentile. Defaults to 99.

• copy (bool, optional) – Whether to create a copy of the input image. Defaults to
True.

Returns
The normalized image.

Return type
ndarray

cellpose.transforms.normalize99_tile(img, blocksize=100, lower=1.0, upper=99.0, tile_overlap=0.1,
norm3D=False, smooth3D=1, is3D=False)

Compute normalization like normalize99 function but in tiles.
Parameters

• img (numpy.ndarray) – Array of shape (Lz x) Ly x Lx (x nchan) containing the image.

• blocksize (float, optional) – Size of tiles. Defaults to 100.

• lower (float, optional) – Lower percentile for normalization. Defaults to 1.0.

• upper (float, optional) – Upper percentile for normalization. Defaults to 99.0.

• tile_overlap (float, optional) – Fraction of overlap of tiles. Defaults to 0.1.

• norm3D (bool, optional) – Use same tiled normalization for each z-plane. Defaults
to False.

• smooth3D (int, optional) – Smoothing factor for 3D normalization. Defaults to 1.

• is3D (bool, optional) – Set to True if image is a 3D stack. Defaults to False.

Returns
Normalized image array of shape (Lz x) Ly x Lx (x nchan).

Return type
numpy.ndarray

cellpose.transforms.normalize_img(img, normalize=True, norm3D=False, invert=False, lowhigh=None,
percentile=None, sharpen_radius=0, smooth_radius=0,
tile_norm_blocksize=0, tile_norm_smooth3D=1, axis=-1)

Normalize each channel of the image.
Parameters

• img (ndarray) – The input image. It should have at least 3 dimensions. If it is 4-
dimensional, it assumes the first non-channel axis is the Z dimension.

• normalize (bool, optional) – Whether to perform normalization. Defaults to True.

• norm3D (bool, optional) – Whether to normalize in 3D. Defaults to False.

• invert (bool, optional) – Whether to invert the image. Useful if cells are dark
instead of bright. Defaults to False.

62 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

• lowhigh (tuple, optional) – The lower and upper bounds for normalization. If
provided, it should be a tuple of two values. Defaults to None.

• percentile (tuple, optional) – The lower and upper percentiles for normalization.
If provided, it should be a tuple of two values. Each value should be between 0 and 100.
Defaults to None.

• sharpen_radius (int, optional) – The radius for sharpening the image. Defaults
to 0.

• smooth_radius (int, optional) – The radius for smoothing the image. Defaults to
0.

• tile_norm_blocksize (int, optional) – The block size for tile-based normaliza-
tion. Defaults to 0.

• tile_norm_smooth3D (int, optional) – The smoothness factor for tile-based nor-
malization in 3D. Defaults to 1.

• axis (int, optional) – The channel axis to loop over for normalization. Defaults to
-1.

Returns
The normalized image of the same size.

Return type
ndarray

Raises

• ValueError – If the image has less than 3 dimensions.

• ValueError – If the provided lowhigh or percentile values are invalid.

• ValueError – If the image is inverted without normalization.

cellpose.transforms.pad_image_ND(img0, div=16, extra=1, min_size=None)
Pad image for test-time so that its dimensions are a multiple of 16 (2D or 3D).

Parameters

• img0 (ndarray) – Image of size [nchan (x Lz) x Ly x Lx].

• div (int, optional) – Divisor for padding. Defaults to 16.

• extra (int, optional) – Extra padding. Defaults to 1.

• min_size (tuple, optional) – Minimum size of the image. Defaults to None.

Returns

tuple containing

• I (ndarray): Padded image.

• ysub (ndarray): Y range of pixels in the padded image corresponding to img0.

• xsub (ndarray): X range of pixels in the padded image corresponding to img0.

cellpose.transforms.random_rotate_and_resize(X, Y=None, scale_range=1.0, xy=(224, 224),
do_3D=False, do_flip=True, rotate=True, rescale=None,
unet=False, random_per_image=True)

Augmentation by random rotation and resizing.
Parameters

13.9. Image transforms 63

cellpose, Release 3.0.7-19-g0ce3653

• X (list of ND-arrays, float) – List of image arrays of size [nchan x Ly x Lx] or
[Ly x Lx].

• Y (list of ND-arrays, float, optional) – List of image labels of size [nlabels
x Ly x Lx] or [Ly x Lx]. The 1st channel of Y is always nearest-neighbor interpolated
(assumed to be masks or 0-1 representation). If Y.shape[0]==3 and not unet, then the
labels are assumed to be [cell probability, Y flow, X flow]. If unet, second channel is
dist_to_bound. Defaults to None.

• scale_range (float, optional) – Range of resizing of images for augmentation.
Images are resized by (1-scale_range/2) + scale_range * np.random.rand(). Defaults to
1.0.

• xy (tuple, int, optional) – Size of transformed images to return. Defaults to
(224,224).

• do_flip (bool, optional) – Whether or not to flip images horizontally. Defaults to
True.

• rotate (bool, optional) – Whether or not to rotate images. Defaults to True.

• rescale (array, float, optional) – How much to resize images by before per-
forming augmentations. Defaults to None.

• unet (bool, optional) – Whether or not to use unet. Defaults to False.

• random_per_image (bool, optional) – Different random rotate and resize per im-
age. Defaults to True.

Returns

tuple containing

• imgi (ND-array, float): Transformed images in array [nimg x nchan x xy[0] x xy[1]].

• lbl (ND-array, float): Transformed labels in array [nimg x nchan x xy[0] x xy[1]].

• scale (array, float): Amount each image was resized by.

cellpose.transforms.reshape(data, channels=[0, 0], chan_first=False)
Reshape data using channels.

Parameters

• data (numpy.ndarray) – The input data. It should have shape (Z x) Ly x Lx x nchan
if data.ndim==8 and data.shape[0]<8, it is assumed to be nchan x Ly x Lx.

• channels (list of int, optional) – The channels to use for reshaping. The first
element of the list is the channel to segment (0=grayscale, 1=red, 2=green, 3=blue).
The second element of the list is the optional nuclear channel (0=none, 1=red, 2=green,
3=blue). For instance, to train on grayscale images, input [0,0]. To train on images with
cells in green and nuclei in blue, input [2,3]. Defaults to [0, 0].

• chan_first (bool, optional) – Whether to return the reshaped data with channel
as the first dimension. Defaults to False.

Returns
The reshaped data with shape (Z x) Ly x Lx x nchan (if chan_first==False).

Return type
numpy.ndarray

64 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

cellpose.transforms.resize_image(img0, Ly=None, Lx=None, rsz=None,
interpolation=cv2.INTER_LINEAR, no_channels=False)

Resize image for computing flows / unresize for computing dynamics.
Parameters

• img0 (ndarray) – Image of size [Y x X x nchan] or [Lz x Y x X x nchan] or [Lz x Y x
X].

• Ly (int, optional) – Desired height of the resized image. Defaults to None.

• Lx (int, optional) – Desired width of the resized image. Defaults to None.

• rsz (float, optional) – Resize coefficient(s) for the image. If Ly is None, rsz is
used. Defaults to None.

• interpolation (int, optional) – OpenCV interpolation method. Defaults to
cv2.INTER_LINEAR.

• no_channels (bool, optional) – Flag indicating whether to treat the third dimen-
sion as a channel. Defaults to False.

Returns
Resized image of size [Ly x Lx x nchan] or [Lz x Ly x Lx x nchan].

Return type
ndarray

Raises
ValueError – If Ly is None and rsz is None.

cellpose.transforms.smooth_sharpen_img(img, smooth_radius=6, sharpen_radius=12, device=torch.device,
is3D=False)

Sharpen blurry images with surround subtraction and/or smooth noisy images.
Parameters

• img (float32) – Array that’s (Lz x) Ly x Lx (x nchan).

• smooth_radius (float, optional) – Size of gaussian smoothing filter, recom-
mended to be 1/10-1/4 of cell diameter (if also sharpening, should be 2-3x smaller than
sharpen_radius). Defaults to 6.

• sharpen_radius (float, optional) – Size of gaussian surround filter, recom-
mended to be 1/8-1/2 of cell diameter (if also smoothing, should be 2-3x larger than
smooth_radius). Defaults to 12.

• device (torch.device, optional) – Device on which to perform sharpening.
Will be faster on GPU but need to ensure GPU has RAM for image. Defaults to
torch.device(“cpu”).

• is3D (bool, optional) – If image is 3D stack (only necessary to set if img.ndim==3).
Defaults to False.

Returns
Array that’s (Lz x) Ly x Lx (x nchan).

Return type
img_sharpen (float32)

cellpose.transforms.unaugment_tiles(y)
Reverse test-time augmentations for averaging (includes flipping of flowsY and flowsX).

13.9. Image transforms 65

cellpose, Release 3.0.7-19-g0ce3653

Parameters
y (float32) – Array of shape (ntiles_y, ntiles_x, chan, Ly, Lx) where chan = (flowsY, flowsX,
cell prob).

Returns
Array of shape (ntiles_y, ntiles_x, chan, Ly, Lx).

Return type
float32

cellpose.transforms.update_axis(m_axis, to_squeeze, ndim)
Squeeze the axis value based on the given parameters.

Parameters

• m_axis (int) – The current axis value.

• to_squeeze (numpy.ndarray) – An array of indices to squeeze.

• ndim (int) – The number of dimensions.

Returns
The updated axis value.

Return type
int or None

13.10 Plot functions

Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.

cellpose.plot.disk(med, r, Ly, Lx)
Returns the pixels of a disk with a given radius and center.

Parameters

• med (tuple) – The center coordinates of the disk.

• r (float) – The radius of the disk.

• Ly (int) – The height of the image.

• Lx (int) – The width of the image.

Returns
A tuple containing the y and x coordinates of the pixels within the disk.

Return type
tuple

cellpose.plot.dx_to_circ(dP, transparency=False, mask=None)
Converts the optic flow representation to a circular color representation.

Parameters

• dP (ndarray) – Flow field components [dy, dx].

• transparency (bool, optional) – Controls the opacity based on the magnitude of
flow. Defaults to False.

• mask (ndarray, optional) – Multiplies each RGB component to suppress noise.

Returns
The circular color representation of the optic flow.

66 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

Return type
ndarray

cellpose.plot.image_to_rgb(img0, channels=[0, 0])
Converts image from 2 x Ly x Lx or Ly x Lx x 2 to RGB Ly x Lx x 3.

Parameters
img0 (ndarray) – Input image of shape 2 x Ly x Lx or Ly x Lx x 2.

Returns
RGB image of shape Ly x Lx x 3.

Return type
ndarray

cellpose.plot.interesting_patch(mask, bsize=130)
Get patch of size bsize x bsize with most masks.

Parameters

• mask (ndarray) – Input mask.

• bsize (int) – Size of the patch.

Returns
Patch coordinates (y, x).

Return type
tuple

cellpose.plot.mask_overlay(img, masks, colors=None)
Overlay masks on image (set image to grayscale).

Parameters

• img (int or float, 2D or 3D array) – Image of size [Ly x Lx (x nchan)].

• masks (int, 2D array) – Masks where 0=NO masks; 1,2,. . . =mask labels.

• colors (int, 2D array, optional) – Size [nmasks x 3], each entry is a color in
0-255 range.

Returns
Array of masks overlaid on grayscale image.

Return type
RGB (uint8, 3D array)

cellpose.plot.mask_rgb(masks, colors=None)
Masks in random RGB colors.

Parameters

• masks (int, 2D array) – Masks where 0=NO masks; 1,2,. . . =mask labels.

• colors (int, 2D array, optional) – Size [nmasks x 3], each entry is a color in
0-255 range.

Returns
Array of masks overlaid on grayscale image.

Return type
RGB (uint8, 3D array)

cellpose.plot.outline_view(img0, maski, color=[1, 0, 0], mode='inner')
Generates a red outline overlay onto the image.

Parameters

13.10. Plot functions 67

cellpose, Release 3.0.7-19-g0ce3653

• img0 (numpy.ndarray) – The input image.

• maski (numpy.ndarray) – The mask representing the region of interest.

• color (list, optional) – The color of the outline overlay. Defaults to [1, 0, 0] (red).

• mode (str, optional) – The mode for generating the outline. Defaults to “inner”.

Returns
The image with the red outline overlay.

Return type
numpy.ndarray

cellpose.plot.show_segmentation(fig, img, maski, flowi, channels=[0, 0], file_name=None)
Plot segmentation results (like on website).

Can save each panel of figure with file_name option. Use channels option if img input is not an RGB image with
3 channels.

Parameters

• fig (matplotlib.pyplot.figure) – Figure in which to make plot.

• img (ndarray) – 2D or 3D array. Image input into cellpose.

• maski (int, ndarray) – For image k, masks[k] output from Cellpose.eval, where
0=NO masks; 1,2,. . . =mask labels.

• flowi (int, ndarray) – For image k, flows[k][0] output from Cellpose.eval (RGB of
flows).

• channels (list of int, optional) – Channels used to run Cellpose, no need to
use if image is RGB. Defaults to [0, 0].

• file_name (str, optional) – File name of image. If file_name is not None, figure
panels are saved. Defaults to None.

• seg_norm (bool, optional) – Improve cell visibility under labels. Defaults to False.

13.11 I/O functions

Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.

cellpose.io.add_model(filename)
add model to .cellpose models folder to use with GUI or CLI

cellpose.io.get_image_files(folder, mask_filter, imf=None, look_one_level_down=False)
Finds all images in a folder and its subfolders (if specified) with the given file extensions.

Parameters

• folder (str) – The path to the folder to search for images.

• mask_filter (str) – The filter for mask files.

• imf (str, optional) – The additional filter for image files. Defaults to None.

• look_one_level_down (bool, optional) – Whether to search for images in sub-
folders. Defaults to False.

Returns
A list of image file paths.

68 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

Return type
list

Raises

• ValueError – If no files are found in the specified folder.

• ValueError – If no images are found in the specified folder with the supported file
extensions.

• ValueError – If no images are found in the specified folder without the mask or flow
file endings.

cellpose.io.get_label_files(image_names, mask_filter, imf=None)
Get the label files corresponding to the given image names and mask filter.

Parameters

• image_names (list) – List of image names.

• mask_filter (str) – Mask filter to be applied.

• imf (str, optional) – Image file extension. Defaults to None.

Returns
A tuple containing the label file names and flow file names (if present).

Return type
tuple

cellpose.io.imread(filename)
Read in an image file with tif or image file type supported by cv2.

Parameters
filename (str) – The path to the image file.

Returns
The image data as a NumPy array.

Return type
numpy.ndarray

Raises
None –

Raises an error if the image file format is not supported.

Examples

>>> img = imread("image.tif")

cellpose.io.imsave(filename, arr)
Saves an image array to a file.

Parameters

• filename (str) – The name of the file to save the image to.

• arr (numpy.ndarray) – The image array to be saved.

Returns
None

13.11. I/O functions 69

cellpose, Release 3.0.7-19-g0ce3653

cellpose.io.load_images_labels(tdir, mask_filter='_masks', image_filter=None,
look_one_level_down=False)

Loads images and corresponding labels from a directory.
Parameters

• tdir (str) – The directory path.

• mask_filter (str, optional) – The filter for mask files. Defaults to “_masks”.

• image_filter (str, optional) – The filter for image files. Defaults to None.

• look_one_level_down (bool, optional) – Whether to look for files one level
down. Defaults to False.

Returns
A tuple containing a list of images, a list of labels, and a list of image names.

Return type
tuple

cellpose.io.load_train_test_data(train_dir, test_dir=None, image_filter=None, mask_filter='_masks',
look_one_level_down=False)

Loads training and testing data for a Cellpose model.
Parameters

• train_dir (str) – The directory path containing the training data.

• test_dir (str, optional) – The directory path containing the testing data. Defaults
to None.

• image_filter (str, optional) – The filter for selecting image files. Defaults to
None.

• mask_filter (str, optional) – The filter for selecting mask files. Defaults to
“_masks”.

• look_one_level_down (bool, optional) – Whether to look for data in subdirecto-
ries of train_dir and test_dir. Defaults to False.

Returns
A list of training images. labels (list): A list of labels corresponding to the training images.
image_names (list): A list of names of the training images. test_images (list, optional): A list
of testing images. None if test_dir is not provided. test_labels (list, optional): A list of labels
corresponding to the testing images. None if test_dir is not provided. test_image_names (list,
optional): A list of names of the testing images. None if test_dir is not provided.

Return type
images (list)

cellpose.io.masks_flows_to_seg(images, masks, flows, file_names, diams=30.0, channels=None,
imgs_restore=None, restore_type=None, ratio=1.0)

Save output of model eval to be loaded in GUI.

Can be list output (run on multiple images) or single output (run on single image).

Saved to file_names[k]+”_seg.npy”.
Parameters

• images (list) – Images input into cellpose.

• masks (list) – Masks output from Cellpose.eval, where 0=NO masks; 1,2,. . . =mask
labels.

70 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

• flows (list) – Flows output from Cellpose.eval.

• file_names (list, str) – Names of files of images.

• diams (float array) – Diameters used to run Cellpose. Defaults to 30.

• channels (list, int, optional) – Channels used to run Cellpose. Defaults to
None.

Returns
None

cellpose.io.remove_model(filename, delete=False)
remove model from .cellpose custom model list

cellpose.io.save_masks(images, masks, flows, file_names, png=True, tif=False, channels=[0, 0], suffix='',
save_flows=False, save_outlines=False, dir_above=False, in_folders=False,
savedir=None, save_txt=False, save_mpl=False)

Save masks + nicely plotted segmentation image to png and/or tiff.

Can save masks, flows to different directories, if in_folders is True.

If png, masks[k] for images[k] are saved to file_names[k]+”_cp_masks.png”.

If tif, masks[k] for images[k] are saved to file_names[k]+”_cp_masks.tif”.

If png and matplotlib installed, full segmentation figure is saved to file_names[k]+”_cp.png”.

Only tif option works for 3D data, and only tif option works for empty masks.
Parameters

• images (list) – Images input into cellpose.

• masks (list) – Masks output from Cellpose.eval, where 0=NO masks; 1,2,. . . =mask
labels.

• flows (list) – Flows output from Cellpose.eval.

• file_names (list, str) – Names of files of images.

• png (bool, optional) – Save masks to PNG. Defaults to True.

• tif (bool, optional) – Save masks to TIF. Defaults to False.

• channels (list, int, optional) – Channels used to run Cellpose. Defaults to
[0,0].

• suffix (str, optional) – Add name to saved masks. Defaults to “”.

• save_flows (bool, optional) – Save flows output from Cellpose.eval. Defaults to
False.

• save_outlines (bool, optional) – Save outlines of masks. Defaults to False.

• dir_above (bool, optional) – Save masks/flows in directory above. Defaults to
False.

• in_folders (bool, optional) – Save masks/flows in separate folders. Defaults to
False.

• savedir (str, optional) – Absolute path where images will be saved. If None, saves
to image directory. Defaults to None.

• save_txt (bool, optional) – Save masks as list of outlines for ImageJ. Defaults to
False.

13.11. I/O functions 71

cellpose, Release 3.0.7-19-g0ce3653

• save_mpl (bool, optional) – If True, saves a matplotlib figure of the original im-
age/segmentation/flows. Does not work for 3D. This takes a long time for large images.
Defaults to False.

Returns
None

cellpose.io.save_rois(masks, file_name)
save masks to .roi files in .zip archive for ImageJ/Fiji

Parameters

• masks (np.ndarray) – masks output from Cellpose.eval, where 0=NO masks;
1,2,. . . =mask labels

• file_name (str) – name to save the .zip file to

Returns
None

cellpose.io.save_to_png(images, masks, flows, file_names)
deprecated (runs io.save_masks with png=True)

does not work for 3D images

13.12 Utils functions

Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.

class cellpose.utils.TqdmToLogger(logger, level=None)
Output stream for TQDM which will output to logger module instead of the StdOut.

flush()

Flush write buffers, if applicable.

This is not implemented for read-only and non-blocking streams.

write(buf)
Write string to file.

Returns the number of characters written, which is always equal to the length of the string.

cellpose.utils.circleMask(d0)
Creates an array with indices which are the radius of that x,y point.

Parameters
d0 (tuple) – Patch of (-d0, d0+1) over which radius is computed.

Returns

A tuple containing:

• rs (ndarray): Array of radii with shape (2*d0[0]+1, 2*d0[1]+1).

• dx (ndarray): Indices of the patch along the x-axis.

• dy (ndarray): Indices of the patch along the y-axis.

Return type
tuple

72 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

cellpose.utils.diameters(masks)
Calculate the diameters of the objects in the given masks.

Parameters: masks (ndarray): masks (0=no cells, 1=first cell, 2=second cell,. . .)

Returns: tuple: A tuple containing the median diameter and an array of diameters for each object.

Examples: >>> masks = np.array([[0, 1, 1], [1, 0, 0], [1, 1, 0]]) >>> diameters(masks) (1.0, array([1.41421356,
1.0, 1.0]))

cellpose.utils.dilate_masks(masks, n_iter=5)
Dilate masks by n_iter pixels.

Parameters

• masks (ndarray) – Array of masks.

• n_iter (int, optional) – Number of pixels to dilate the masks. Defaults to 5.

Returns
Dilated masks.

Return type
ndarray

cellpose.utils.distance_to_boundary(masks)
Get the distance to the boundary of mask pixels.

Parameters
masks (int, 2D or 3D array) – The masks array. Size [Ly x Lx] or [Lz x Ly x Lx], where
0 represents no mask and 1, 2, . . . represent mask labels.

Returns
The distance to the boundary. Size [Ly x Lx] or [Lz x Ly x Lx].

Return type
dist_to_bound (2D or 3D array)

Raises
ValueError – If the masks array is not 2D or 3D.

cellpose.utils.download_url_to_file(url, dst, progress=True)
Download object at the given URL to a local path.

Thanks to torch, slightly modified

Parameters

• url (string) – URL of the object to download

• dst (string) – Full path where object will be saved, e.g. /tmp/temporary_file

• progress (bool, optional) – whether or not to display a progress bar to stderr De-
fault: True

cellpose.utils.fill_holes_and_remove_small_masks(masks, min_size=15)
Fills holes in masks (2D/3D) and discards masks smaller than min_size.

This function fills holes in each mask using scipy.ndimage.morphology.binary_fill_holes. It also removes masks
that are smaller than the specified min_size.

Parameters: masks (ndarray): Int, 2D or 3D array of labelled masks.
0 represents no mask, while positive integers represent mask labels. The size can be [Ly x Lx] or
[Lz x Ly x Lx].

13.12. Utils functions 73

cellpose, Release 3.0.7-19-g0ce3653

min_size (int, optional): Minimum number of pixels per mask.
Masks smaller than min_size will be removed. Set to -1 to turn off this functionality. Default is 15.

Returns: ndarray: Int, 2D or 3D array of masks with holes filled and small masks removed.
0 represents no mask, while positive integers represent mask labels. The size is [Ly x Lx] or [Lz x
Ly x Lx].

cellpose.utils.get_mask_compactness(masks)
Calculate the compactness of masks.

Parameters
masks (ndarray) – Binary masks representing objects.

Returns
Array of compactness values for each mask.

Return type
ndarray

cellpose.utils.get_mask_perimeters(masks)
Calculate the perimeters of the given masks.

Parameters
masks (numpy.ndarray) – Binary masks representing objects.

Returns
Array containing the perimeters of each mask.

Return type
numpy.ndarray

cellpose.utils.get_mask_stats(masks_true)
Calculate various statistics for the given binary masks.

Parameters
masks_true (ndarray) – masks (0=no cells, 1=first cell, 2=second cell,. . .)

Returns
Convexity values for each mask. solidity (ndarray): Solidity values for each mask. compact-
ness (ndarray): Compactness values for each mask.

Return type
convexity (ndarray)

cellpose.utils.get_masks_unet(output, cell_threshold=0, boundary_threshold=0)
Create masks using cell probability and cell boundary.

Parameters

• output (ndarray) – The output array containing cell probability and cell boundary.

• cell_threshold (float, optional) – The threshold value for cell probability. De-
faults to 0.

• boundary_threshold (float, optional) – The threshold value for cell boundary.
Defaults to 0.

Returns
The masks representing the segmented cells.

Return type
ndarray

cellpose.utils.get_outline_multi(args)
Get the outline of a specific mask in a multi-mask image.

74 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

Parameters
args (tuple) – A tuple containing the masks and the mask number.

Returns
The outline of the specified mask as an array of coordinates.

Return type
numpy.ndarray

cellpose.utils.get_perimeter(points)
Calculate the perimeter of a set of points.

Parameters
points (ndarray) – An array of points with shape (npoints, ndim).

Returns
The perimeter of the points.

Return type
float

cellpose.utils.masks_to_edges(masks, threshold=1.0)
Get edges of masks as a 0-1 array.

Parameters

• masks (int, 2D or 3D array) – Size [Ly x Lx] or [Lz x Ly x Lx], where 0=NO
masks and 1,2,. . . =mask labels.

• threshold (float, optional) – Threshold value for distance to boundary. Defaults
to 1.0.

Returns
Size [Ly x Lx] or [Lz x Ly x Lx], where True pixels are edge pixels.

Return type
edges (2D or 3D array)

cellpose.utils.masks_to_outlines(masks)
Get outlines of masks as a 0-1 array.

Parameters
masks (int, 2D or 3D array) – Size [Ly x Lx] or [Lz x Ly x Lx], where 0=NO masks
and 1,2,. . . =mask labels.

Returns
Size [Ly x Lx] or [Lz x Ly x Lx], where True pixels are outlines.

Return type
outlines (2D or 3D array)

cellpose.utils.outlines_list(masks, multiprocessing_threshold=1000, multiprocessing=None)
Get outlines of masks as a list to loop over for plotting.

Parameters

• masks (ndarray) – Array of masks.

• multiprocessing_threshold (int, optional) – Threshold for enabling multipro-
cessing. Defaults to 1000.

• multiprocessing (bool, optional) – Flag to enable multiprocessing. Defaults to
None.

Returns
List of outlines.

13.12. Utils functions 75

cellpose, Release 3.0.7-19-g0ce3653

Return type
list

Raises
None –

Notes

• This function is a wrapper for outlines_list_single and outlines_list_multi.
• Multiprocessing is disabled for Windows.

cellpose.utils.outlines_list_multi(masks, num_processes=None)
Get outlines of masks as a list to loop over for plotting.

Parameters
masks (ndarray) – masks (0=no cells, 1=first cell, 2=second cell,. . .)

Returns
List of outlines as pixel coordinates.

Return type
list

cellpose.utils.outlines_list_single(masks)
Get outlines of masks as a list to loop over for plotting.

Parameters
masks (ndarray) – masks (0=no cells, 1=first cell, 2=second cell,. . .)

Returns
List of outlines as pixel coordinates.

Return type
list

cellpose.utils.radius_distribution(masks, bins)
Calculate the radius distribution of masks.

Parameters

• masks (ndarray) – masks (0=no cells, 1=first cell, 2=second cell,. . .)

• bins (int) – Number of bins for the histogram.

Returns

A tuple containing:

• nb (ndarray): Normalized histogram of radii.

• md (float): Median radius.

• radii (ndarray): Array of radii.

Return type
tuple

cellpose.utils.remove_edge_masks(masks, change_index=True)
Removes masks with pixels on the edge of the image.

Parameters

• masks (int, 2D or 3D array) – The masks to be processed. Size [Ly x Lx] or [Lz
x Ly x Lx], where 0 represents no mask and 1, 2, . . . represent mask labels.

76 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

• change_index (bool, optional) – If True, after removing masks, changes the in-
dexing so that there are no missing label numbers. Defaults to True.

Returns
The processed masks. Size [Ly x Lx] or [Lz x Ly x Lx], where 0 represents no mask and 1,
2, . . . represent mask labels.

Return type
outlines (2D or 3D array)

cellpose.utils.size_distribution(masks)
Calculates the size distribution of masks.

Parameters
masks (ndarray) – masks (0=no cells, 1=first cell, 2=second cell,. . .)

Returns
The ratio of the 25th percentile of mask sizes to the 75th percentile of mask sizes.

Return type
float

cellpose.utils.stitch3D(masks, stitch_threshold=0.25)
Stitch 2D masks into a 3D volume using a stitch_threshold on IOU.

Parameters

• masks (list or ndarray) – List of 2D masks.

• stitch_threshold (float, optional) – Threshold value for stitching. Defaults to
0.25.

Returns
List of stitched 3D masks.

Return type
list

13.13 Network classes

Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.

class cellpose.resnet_torch.CPnet(*args: Any, **kwargs: Any)
CPnet is the Cellpose neural network model used for cell segmentation and image restoration.

Parameters

• nbase (list) – List of integers representing the number of channels in each layer of the
downsample path.

• nout (int) – Number of output channels.

• sz (int) – Size of the input image.

• mkldnn (bool, optional) – Whether to use MKL-DNN acceleration. Defaults to
False.

• conv_3D (bool, optional) – Whether to use 3D convolution. Defaults to False.

• max_pool (bool, optional) – Whether to use max pooling. Defaults to True.

• diam_mean (float, optional) – Mean diameter of the cells. Defaults to 30.0.

13.13. Network classes 77

cellpose, Release 3.0.7-19-g0ce3653

nbase

List of integers representing the number of channels in each layer of the downsample path.

Type
list

nout

Number of output channels.

Type
int

sz

Size of the input image.

Type
int

residual_on

Whether to use residual connections.

Type
bool

style_on

Whether to use style transfer.

Type
bool

concatenation

Whether to use concatenation.

Type
bool

conv_3D

Whether to use 3D convolution.

Type
bool

mkldnn

Whether to use MKL-DNN acceleration.

Type
bool

downsample

Downsample blocks of the network.

Type
nn.Module

upsample

Upsample blocks of the network.

Type
nn.Module

78 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

make_style

Style module, avgpool’s over all spatial positions.

Type
nn.Module

output

Output module - batchconv layer.

Type
nn.Module

diam_mean

Parameter representing the mean diameter to which the cells are rescaled to during training.

Type
nn.Parameter

diam_labels

Parameter representing the mean diameter of the cells in the training set (before rescaling).

Type
nn.Parameter

property device

Get the device of the model.

Returns
The device of the model.

Return type
torch.device

forward(data)
Forward pass of the CPnet model.

Parameters
data (torch.Tensor) – Input data.

Returns
A tuple containing the output tensor, style tensor, and downsampled tensors.

Return type
tuple

load_model(filename, device=None)
Load the model from a file.

Parameters

• filename (str) – The path to the file where the model is saved.

• device (torch.device, optional) – The device to load the model on. Defaults
to None.

save_model(filename)
Save the model to a file.

Parameters
filename (str) – The path to the file where the model will be saved.

class cellpose.resnet_torch.batchconvstyle(*args: Any, **kwargs: Any)

13.13. Network classes 79

cellpose, Release 3.0.7-19-g0ce3653

class cellpose.resnet_torch.downsample(*args: Any, **kwargs: Any)

class cellpose.resnet_torch.make_style(*args: Any, **kwargs: Any)

class cellpose.resnet_torch.resdown(*args: Any, **kwargs: Any)

class cellpose.resnet_torch.resup(*args: Any, **kwargs: Any)

class cellpose.resnet_torch.upsample(*args: Any, **kwargs: Any)

13.14 Core functions

Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.

cellpose.core.assign_device(use_torch=True, gpu=False, device=0)
Assigns the device (CPU or GPU or mps) to be used for computation.

Parameters

• use_torch (bool, optional) – Whether to use torch for GPU detection. Defaults to
True.

• gpu (bool, optional) – Whether to use GPU for computation. Defaults to False.

• device (int or str, optional) – The device index or name to be used. Defaults
to 0.

Returns
The assigned device. bool: True if GPU is used, False otherwise.

Return type
torch.device

cellpose.core.check_mkl(use_torch=True)
Checks if MKL-DNN is enabled and working.

Parameters
use_torch (bool, optional) – Whether to use torch. Defaults to True.

Returns
True if MKL-DNN is enabled, False otherwise.

Return type
bool

cellpose.core.run_3D(net, imgs, batch_size=8, rsz=1.0, anisotropy=None, augment=False, tile=True,
tile_overlap=0.1, bsize=224, progress=None)

Run network on image z-stack.

(faster if augment is False)
Parameters

• imgs (np.ndarray) – The input image stack of size [Lz x Ly x Lx x nchan].

• batch_size (int, optional) – Number of tiles to run in a batch. Defaults to 8.

• rsz (float, optional) – Resize coefficient(s) for image. Defaults to 1.0.

• anisotropy (float, optional) – for 3D segmentation, optional rescaling factor
(e.g. set to 2.0 if Z is sampled half as dense as X or Y). Defaults to None.

80 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

• augment (bool, optional) – Tiles image with overlapping tiles and flips overlapped
regions to augment. Defaults to False.

• tile (bool, optional) – Tiles image to ensure GPU/CPU memory usage limited
(recommended); cannot be turned off for 3D segmentation. Defaults to True.

• tile_overlap (float, optional) – Fraction of overlap of tiles when computing
flows. Defaults to 0.1.

• bsize (int, optional) – Size of tiles to use in pixels [bsize x bsize]. Defaults to 224.

• progress (QProgressBar, optional) – pyqt progress bar. Defaults to None.

Returns

output of network, if tiled it is averaged in tile overlaps. Size of [Ly x Lx x 3] or [Lz x
Ly x Lx x 3].

y[. . . ,0] is Y flow; y[. . . ,1] is X flow; y[. . . ,2] is cell probability.

style (np.ndarray): 1D array of size 256 summarizing the style of the image, if tiled it is
averaged over tiles.

Return type
y (np.ndarray)

cellpose.core.run_net(net, imgs, batch_size=8, augment=False, tile=True, tile_overlap=0.1, bsize=224)
Run network on image or stack of images.

(faster if augment is False)
Parameters

• net (class) – cellpose network (model.net)

• imgs (np.ndarray) – The input image or stack of images of size [Ly x Lx x nchan] or
[Lz x Ly x Lx x nchan].

• batch_size (int, optional) – Number of tiles to run in a batch. Defaults to 8.

• rsz (float, optional) – Resize coefficient(s) for image. Defaults to 1.0.

• augment (bool, optional) – Tiles image with overlapping tiles and flips overlapped
regions to augment. Defaults to False.

• tile (bool, optional) – Tiles image to ensure GPU/CPU memory usage limited
(recommended); cannot be turned off for 3D segmentation. Defaults to True.

• tile_overlap (float, optional) – Fraction of overlap of tiles when computing
flows. Defaults to 0.1.

• bsize (int, optional) – Size of tiles to use in pixels [bsize x bsize]. Defaults to 224.

Returns

output of network, if tiled it is averaged in tile overlaps. Size of [Ly x Lx x 3] or [Lz x
Ly x Lx x 3].

y[. . . ,0] is Y flow; y[. . . ,1] is X flow; y[. . . ,2] is cell probability.

style (np.ndarray): 1D array of size 256 summarizing the style of the image, if tiled it is
averaged over tiles.

Return type
y (np.ndarray)

13.14. Core functions 81

cellpose, Release 3.0.7-19-g0ce3653

cellpose.core.use_gpu(gpu_number=0, use_torch=True)
Check if GPU is available for use.

Parameters

• gpu_number (int) – The index of the GPU to be used. Default is 0.

• use_torch (bool) – Whether to use PyTorch for GPU check. Default is True.

Returns
True if GPU is available, False otherwise.

Return type
bool

Raises
ValueError – If use_torch is False, as cellpose only runs with PyTorch now.

13.15 All models functions

Copyright © 2023 Howard Hughes Medical Institute, Authored by Carsen Stringer and Marius Pachitariu.

class cellpose.models.Cellpose(gpu=False, model_type='cyto3', nchan=2, device=None,
backbone='default')

Main model which combines SizeModel and CellposeModel.
Parameters

• gpu (bool, optional) – Whether or not to use GPU, will check if GPU available.
Defaults to False.

• model_type (str, optional) – Model type. “cyto”=cytoplasm model; “nu-
clei”=nucleus model; “cyto2”=cytoplasm model with additional user images;
“cyto3”=super-generalist model; Defaults to “cyto3”.

• device (torch device, optional) – Device used for model running / train-
ing. Overrides gpu input. Recommended if you want to use a specific GPU (e.g.
torch.device(“cuda:1”)). Defaults to None.

device

Device used for model running / training.

Type
torch device

gpu

Flag indicating if GPU is used.

Type
bool

diam_mean

Mean diameter for cytoplasm model.

Type
float

cp

CellposeModel instance.

Type
CellposeModel

82 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

pretrained_size

Pretrained size model path.

Type
str

sz

SizeModel instance.

Type
SizeModel

eval(x, batch_size=8, channels=[0, 0], channel_axis=None, invert=False, normalize=True, diameter=30.0,
do_3D=False, find_masks=True, **kwargs)
Run cellpose size model and mask model and get masks.

Parameters

• x (list or array) – List or array of images. Can be list of 2D/3D images, or
array of 2D/3D images, or 4D image array.

• batch_size (int, optional) – Number of 224x224 patches to run simultane-
ously on the GPU. Can make smaller or bigger depending on GPU memory usage.
Defaults to 8.

• channels (list, optional) – List of channels, either of length 2 or of length
number of images by 2. First element of list is the channel to segment (0=grayscale,
1=red, 2=green, 3=blue). Second element of list is the optional nuclear channel
(0=none, 1=red, 2=green, 3=blue). For instance, to segment grayscale images, input
[0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To
segment one grayscale image and one image with cells in green and nuclei in blue,
input [[0,0], [2,3]]. Defaults to [0,0].

• channel_axis (int, optional) – If None, channels dimension is attempted to
be automatically determined. Defaults to None.

• invert (bool, optional) – Invert image pixel intensity before running network
(if True, image is also normalized). Defaults to False.

• normalize (bool, optional) – If True, normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel; can also pass dictionary
of parameters (see CellposeModel for details). Defaults to True.

• diameter (float, optional) – If set to None, then diameter is automatically
estimated if size model is loaded. Defaults to 30..

• do_3D (bool, optional) – Set to True to run 3D segmentation on 4D image
input. Defaults to False.

Returns

tuple containing

• masks (list of 2D arrays or single 3D array): Labelled image, where 0=no
masks; 1,2,. . . =mask labels.

• flows (list of lists 2D arrays or list of 3D arrays):

– flows[k][0] = XY flow in HSV 0-255

– flows[k][1] = XY flows at each pixel

13.15. All models functions 83

cellpose, Release 3.0.7-19-g0ce3653

– flows[k][2] = cell probability (if > cellprob_threshold, pixel used for dy-
namics)

– flows[k][3] = final pixel locations after Euler integration

• styles (list of 1D arrays of length 256 or single 1D array): Style vector summa-
rizing each image, also used to estimate size of objects in image.

• diams (list of diameters or float): List of diameters or float (if do_3D=True).

class cellpose.models.CellposeModel(gpu=False, pretrained_model=False, model_type=None,
diam_mean=30.0, device=None, nchan=2, backbone='default')

Class representing a Cellpose model.

diam_mean

Mean “diameter” value for the model.

Type
float

builtin

Whether the model is a built-in model or not.

Type
bool

device

Device used for model running / training.

Type
torch device

mkldnn

MKLDNN flag for the model.

Type
None or bool

nchan

Number of channels used as input to the network.

Type
int

nclasses

Number of classes in the model.

Type
int

nbase

List of base values for the model.

Type
list

net

Cellpose network.

Type
CPnet

84 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

pretrained_model

Full path to pretrained cellpose model(s).

Type
str or list of strings

diam_labels

Diameter labels of the model.

Type
numpy array

net_type

Type of the network.

Type
str

__init__(self, gpu=False, pretrained_model=False, model_type=None, diam_mean=30., device=None,
nchan=2)

Initialize the CellposeModel.

eval(self, x, batch_size=8, resample=True, channels=None, channel_axis=None, z_axis=None,
normalize=True, invert=False, rescale=None, diameter=None, flow_threshold=0.4,
cellprob_threshold=0.0, do_3D=False, anisotropy=None, stitch_threshold=0.0, min_size=15,
niter=None, augment=False, tile=True, tile_overlap=0.1, bsize=224, interp=True,
compute_masks=True, progress=None)
Segment list of images x, or 4D array - Z x nchan x Y x X.

eval(x, batch_size=8, resample=True, channels=None, channel_axis=None, z_axis=None, normalize=True,
invert=False, rescale=None, diameter=None, flow_threshold=0.4, cellprob_threshold=0.0,
do_3D=False, anisotropy=None, stitch_threshold=0.0, min_size=15, niter=None, augment=False,
tile=True, tile_overlap=0.1, bsize=224, interp=True, compute_masks=True, progress=None)
segment list of images x, or 4D array - Z x nchan x Y x X

Parameters

• x (list, np.ndarry) – can be list of 2D/3D/4D images, or array of 2D/3D/4D
images

• batch_size (int, optional) – number of 224x224 patches to run simultane-
ously on the GPU (can make smaller or bigger depending on GPU memory usage).
Defaults to 8.

• resample (bool, optional) – run dynamics at original image size (will be
slower but create more accurate boundaries). Defaults to True.

• channels (list, optional) – list of channels, either of length 2 or of length
number of images by 2. First element of list is the channel to segment (0=grayscale,
1=red, 2=green, 3=blue). Second element of list is the optional nuclear channel
(0=none, 1=red, 2=green, 3=blue). For instance, to segment grayscale images, input
[0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To
segment one grayscale image and one image with cells in green and nuclei in blue,
input [[0,0], [2,3]]. Defaults to None.

• channel_axis (int, optional) – channel axis in element of list x, or of
np.ndarray x. if None, channels dimension is attempted to be automatically de-
termined. Defaults to None.

13.15. All models functions 85

cellpose, Release 3.0.7-19-g0ce3653

• z_axis (int, optional) – z axis in element of list x, or of np.ndarray x. if None,
z dimension is attempted to be automatically determined. Defaults to None.

• normalize (bool, optional) – if True, normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel; can also pass dictionary
of parameters (all keys are optional, default values shown):

– ”lowhigh”=None : pass in normalization values for 0.0 and 1.0 as list [low,
high] (if not None, all following parameters ignored)

– ”sharpen”=0 ; sharpen image with high pass filter, recommended to be 1/4-1/8
diameter of cells in pixels

– ”normalize”=True ; run normalization (if False, all following parameters ig-
nored)

– ”percentile”=None : pass in percentiles to use as list [perc_low, perc_high]

– ”tile_norm”=0 ; compute normalization in tiles across image to brighten dark
areas, to turn on set to window size in pixels (e.g. 100)

– ”norm3D”=False ; compute normalization across entire z-stack rather than
plane-by-plane in stitching mode.

Defaults to True.

• invert (bool, optional) – invert image pixel intensity before running network.
Defaults to False.

• rescale (float, optional) – resize factor for each image, if None, set to 1.0;
(only used if diameter is None). Defaults to None.

• diameter (float, optional) – diameter for each image, if diameter is None, set
to diam_mean or diam_train if available. Defaults to None.

• flow_threshold (float, optional) – flow error threshold (all cells with errors
below threshold are kept) (not used for 3D). Defaults to 0.4.

• cellprob_threshold (float, optional) – all pixels with value above thresh-
old kept for masks, decrease to find more and larger masks. Defaults to 0.0.

• do_3D (bool, optional) – set to True to run 3D segmentation on 3D/4D image
input. Defaults to False.

• anisotropy (float, optional) – for 3D segmentation, optional rescaling factor
(e.g. set to 2.0 if Z is sampled half as dense as X or Y). Defaults to None.

• stitch_threshold (float, optional) – if stitch_threshold>0.0 and not
do_3D, masks are stitched in 3D to return volume segmentation. Defaults to 0.0.

• min_size (int, optional) – all ROIs below this size, in pixels, will be dis-
carded. Defaults to 15.

• niter (int, optional) – number of iterations for dynamics computation. if
None, it is set proportional to the diameter. Defaults to None.

• augment (bool, optional) – tiles image with overlapping tiles and flips over-
lapped regions to augment. Defaults to False.

• tile (bool, optional) – tiles image to ensure GPU/CPU memory usage limited
(recommended). Defaults to True.

• tile_overlap (float, optional) – fraction of overlap of tiles when computing
flows. Defaults to 0.1.

86 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

• bsize (int, optional) – block size for tiles, recommended to keep at 224, like
in training. Defaults to 224.

• interp (bool, optional) – interpolate during 2D dynamics (not available in
3D) . Defaults to True.

• compute_masks (bool, optional) – Whether or not to compute dynamics and
return masks. This is set to False when retrieving the styles for the size model.
Defaults to True.

• progress (QProgressBar, optional) – pyqt progress bar. Defaults to None.

Returns

• masks (list, np.ndarray): labelled image(s), where 0=no masks; 1,2,. . . =mask labels

• flows (list): list of lists: flows[k][0] = XY flow in HSV 0-255; flows[k][1] = XY(Z)
flows at each pixel; flows[k][2] = cell probability (if > cellprob_threshold, pixel
used for dynamics); flows[k][3] = final pixel locations after Euler integration

• styles (list, np.ndarray): style vector summarizing each image of size 256.

Return type
A tuple containing

class cellpose.models.SizeModel(cp_model, device=None, pretrained_size=None, **kwargs)
Linear regression model for determining the size of objects in image used to rescale before input to cp_model.
Uses styles from cp_model.

pretrained_size

Path to pretrained size model.

Type
str

cp

Model from which to get styles.

Type
UnetModel or CellposeModel

device

Device used for model running / training (torch.device(“cuda”) or torch.device(“cpu”)), overrides gpu
input, recommended if you want to use a specific GPU (e.g. torch.device(“cuda:1”)).

Type
torch device

diam_mean

Mean diameter of objects.

Type
float

eval(self, x, channels=None, channel_axis=None, normalize=True, invert=False,

augment=False, tile=True, batch_size=8, progress=None, interp=True):

Use images x to produce style or use style input to predict size of objects in image.

Raises
ValueError – If no pretrained cellpose model is specified, cannot compute size.

13.15. All models functions 87

cellpose, Release 3.0.7-19-g0ce3653

eval(x, channels=None, channel_axis=None, normalize=True, invert=False, augment=False, tile=True,
batch_size=8, progress=None)
Use images x to produce style or use style input to predict size of objects in image.

Object size estimation is done in two steps: 1. Use a linear regression model to predict size from style in
image. 2. Resize image to predicted size and run CellposeModel to get output masks.

Take the median object size of the predicted masks as the final predicted size.

Parameters

• x (list, np.ndarry) – can be list of 2D/3D/4D images, or array of 2D/3D/4D
images

• channels (list, optional) – list of channels, either of length 2 or of length
number of images by 2. First element of list is the channel to segment (0=grayscale,
1=red, 2=green, 3=blue). Second element of list is the optional nuclear channel
(0=none, 1=red, 2=green, 3=blue). For instance, to segment grayscale images, input
[0,0]. To segment images with cells in green and nuclei in blue, input [2,3]. To
segment one grayscale image and one image with cells in green and nuclei in blue,
input [[0,0], [2,3]]. Defaults to None.

• channel_axis (int, optional) – channel axis in element of list x, or of
np.ndarray x. if None, channels dimension is attempted to be automatically de-
termined. Defaults to None.

• normalize (bool, optional) – if True, normalize data so 0.0=1st percentile and
1.0=99th percentile of image intensities in each channel; can also pass dictionary
of parameters (all keys are optional, default values shown):

– ”lowhigh”=None : pass in normalization values for 0.0 and 1.0 as list [low,
high] (if not None, all following parameters ignored)

– ”sharpen”=0 ; sharpen image with high pass filter, recommended to be 1/4-1/8
diameter of cells in pixels

– ”normalize”=True ; run normalization (if False, all following parameters ig-
nored)

– ”percentile”=None : pass in percentiles to use as list [perc_low, perc_high]

– ”tile_norm”=0 ; compute normalization in tiles across image to brighten dark
areas, to turn on set to window size in pixels (e.g. 100)

– ”norm3D”=False ; compute normalization across entire z-stack rather than
plane-by-plane in stitching mode.

Defaults to True.

• invert (bool, optional) – Invert image pixel intensity before running network
(if True, image is also normalized). Defaults to False.

• augment (bool, optional) – tiles image with overlapping tiles and flips over-
lapped regions to augment. Defaults to False.

• tile (bool, optional) – tiles image to ensure GPU/CPU memory usage limited
(recommended). Defaults to True.

• batch_size (int, optional) – number of 224x224 patches to run simultane-
ously on the GPU (can make smaller or bigger depending on GPU memory usage).
Defaults to 8.

• progress (QProgressBar, optional) – pyqt progress bar. Defaults to None.

88 Chapter 13. Cellpose API Guide

cellpose, Release 3.0.7-19-g0ce3653

Returns

• diam (np.ndarray): Final estimated diameters from images x or styles style after
running both steps.

• diam_style (np.ndarray): Estimated diameters from style alone.

Return type
A tuple containing

13.15. All models functions 89

cellpose, Release 3.0.7-19-g0ce3653

90 Chapter 13. Cellpose API Guide

CHAPTER

FOURTEEN

CELLPOSE CLI

See example usage at CLI examples. A description of the most important settings can be found on the Settings page.

14.1 Command Line Usage

Cellpose Command Line Parameters

usage: cellpose [-h] [--version] [--verbose] [--Zstack] [--use_gpu]
[--gpu_device GPU_DEVICE] [--check_mkl] [--dir DIR]
[--image_path IMAGE_PATH] [--look_one_level_down]
[--img_filter IMG_FILTER] [--channel_axis CHANNEL_AXIS]
[--z_axis Z_AXIS] [--chan CHAN] [--chan2 CHAN2] [--invert]
[--all_channels] [--pretrained_model PRETRAINED_MODEL]
[--restore_type RESTORE_TYPE] [--chan2_restore]
[--add_model ADD_MODEL] [--transformer] [--no_resample]
[--no_interp] [--no_norm] [--do_3D] [--diameter DIAMETER]
[--stitch_threshold STITCH_THRESHOLD] [--min_size MIN_SIZE]
[--flow_threshold FLOW_THRESHOLD]
[--cellprob_threshold CELLPROB_THRESHOLD] [--niter NITER]
[--anisotropy ANISOTROPY] [--exclude_on_edges] [--augment]
[--save_png] [--save_tif] [--no_npy] [--savedir SAVEDIR]
[--dir_above] [--in_folders] [--save_flows] [--save_outlines]
[--save_rois] [--save_txt] [--save_mpl] [--train]
[--train_size] [--test_dir TEST_DIR] [--file_list FILE_LIST]
[--mask_filter MASK_FILTER] [--diam_mean DIAM_MEAN]
[--learning_rate LEARNING_RATE] [--weight_decay WEIGHT_DECAY]
[--n_epochs N_EPOCHS] [--batch_size BATCH_SIZE]
[--nimg_per_epoch NIMG_PER_EPOCH]
[--nimg_test_per_epoch NIMG_TEST_PER_EPOCH]
[--min_train_masks MIN_TRAIN_MASKS] [--SGD SGD]
[--save_every SAVE_EVERY] [--model_name_out MODEL_NAME_OUT]

91

cellpose, Release 3.0.7-19-g0ce3653

14.1.1 Named Arguments

--version show cellpose version info

Default: False

--verbose show information about running and settings and save to log

Default: False

--Zstack run GUI in 3D mode

Default: False

14.1.2 Hardware Arguments

--use_gpu use gpu if torch with cuda installed

Default: False

--gpu_device which gpu device to use, use an integer for torch, or mps for M1

Default: “0”

--check_mkl check if mkl working

Default: False

14.1.3 Input Image Arguments

--dir folder containing data to run or train on.

Default: []

--image_path if given and –dir not given, run on single image instead of folder (cannot train
with this option)

Default: []

--look_one_level_down run processing on all subdirectories of current folder

Default: False

--img_filter end string for images to run on

Default: []

--channel_axis axis of image which corresponds to image channels

--z_axis axis of image which corresponds to Z dimension

--chan channel to segment; 0: GRAY, 1: RED, 2: GREEN, 3: BLUE. Default: 0

Default: 0

--chan2 nuclear channel (if cyto, optional); 0: NONE, 1: RED, 2: GREEN, 3: BLUE.
Default: 0

Default: 0

--invert invert grayscale channel

Default: False

92 Chapter 14. Cellpose CLI

cellpose, Release 3.0.7-19-g0ce3653

--all_channels use all channels in image if using own model and images with special channels

Default: False

14.1.4 Model Arguments

--pretrained_model model to use for running or starting training

Default: “cyto”

--restore_type model to use for image restoration

--chan2_restore use nuclei restore model for second channel

Default: False

--add_model model path to copy model to hidden .cellpose folder for using in GUI/CLI

--transformer use transformer backbone (pretrained_model from Cellpose3 is transformer_cp3)

Default: False

14.1.5 Algorithm Arguments

--no_resample disable dynamics on full image (makes algorithm faster for images with large di-
ameters)

Default: False

--no_interp do not interpolate when running dynamics (was default)

Default: False

--no_norm do not normalize images (normalize=False)

Default: False

--do_3D process images as 3D stacks of images (nplanes x nchan x Ly x Lx

Default: False

--diameter cell diameter, if 0 will use the diameter of the training labels used in the model,
or with built-in model will estimate diameter for each image

Default: 30.0

--stitch_threshold compute masks in 2D then stitch together masks with IoU>0.9 across planes

Default: 0.0

--min_size minimum number of pixels per mask, can turn off with -1

Default: 15

--flow_threshold flow error threshold, 0 turns off this optional QC step. Default: 0.4

Default: 0.4

--cellprob_threshold cellprob threshold, default is 0, decrease to find more and larger masks

Default: 0

--niter niter, number of iterations for dynamics for mask creation, default of 0 means it
is proportional to diameter, set to a larger number like 2000 for very long ROIs

Default: 0

14.1. Command Line Usage 93

cellpose, Release 3.0.7-19-g0ce3653

--anisotropy anisotropy of volume in 3D

Default: 1.0

--exclude_on_edges discard masks which touch edges of image

Default: False

--augment tiles image with overlapping tiles and flips overlapped regions to augment

Default: False

14.1.6 Output Arguments

--save_png save masks as png and outlines as text file for ImageJ

Default: False

--save_tif save masks as tif and outlines as text file for ImageJ

Default: False

--no_npy suppress saving of npy

Default: False

--savedir folder to which segmentation results will be saved (defaults to input image direc-
tory)

--dir_above save output folders adjacent to image folder instead of inside it (off by default)

Default: False

--in_folders flag to save output in folders (off by default)

Default: False

--save_flows whether or not to save RGB images of flows when masks are saved (disabled by
default)

Default: False

--save_outlines whether or not to save RGB outline images when masks are saved (disabled by
default)

Default: False

--save_rois whether or not to save ImageJ compatible ROI archive (disabled by default)

Default: False

--save_txt flag to enable txt outlines for ImageJ (disabled by default)

Default: False

--save_mpl save a figure of image/mask/flows using matplotlib (disabled by default). This is
slow, especially with large images.

Default: False

94 Chapter 14. Cellpose CLI

cellpose, Release 3.0.7-19-g0ce3653

14.1.7 Training Arguments

--train train network using images in dir

Default: False

--train_size train size network at end of training

Default: False

--test_dir folder containing test data (optional)

Default: []

--file_list path to list of files for training and testing and probabilities for each image (op-
tional)

Default: []

--mask_filter end string for masks to run on. use ‘_seg.npy’ for manual annotations from the
GUI. Default: “_masks”

Default: “_masks”

--diam_mean mean diameter to resize cells to during training – if starting from pretrained mod-
els it cannot be changed from 30.0

Default: 30.0

--learning_rate learning rate. Default: 0.2

Default: 0.2

--weight_decay weight decay. Default: 1e-05

Default: 1e-05

--n_epochs number of epochs. Default: 500

Default: 500

--batch_size batch size. Default: 8

Default: 8

--nimg_per_epoch number of train images per epoch. Default is to use all train images.

--nimg_test_per_epoch number of test images per epoch. Default is to use all test images.

--min_train_masks minimum number of masks a training image must have to be used. Default: 5

Default: 5

--SGD use SGD

Default: 1

--save_every number of epochs to skip between saves. Default: 100

Default: 100

--model_name_out Name of model to save as, defaults to name describing model architecture. Model
is saved in the folder specified by –dir in models subfolder.

14.1. Command Line Usage 95

cellpose, Release 3.0.7-19-g0ce3653

96 Chapter 14. Cellpose CLI

PYTHON MODULE INDEX

c
cellpose.core, 80
cellpose.dynamics, 54
cellpose.io, 68
cellpose.metrics, 53
cellpose.models, 82
cellpose.plot, 66
cellpose.resnet_torch, 77
cellpose.train, 50
cellpose.transforms, 60
cellpose.utils, 72

97

cellpose, Release 3.0.7-19-g0ce3653

98 Python Module Index

INDEX

Symbols
__init__() (cellpose.models.CellposeModel method),

42, 85

A
add_model() (in module cellpose.io), 68
aggregated_jaccard_index() (in module cell-

pose.metrics), 53
assign_device() (in module cellpose.core), 80
average_precision() (in module cellpose.metrics), 53
average_tiles() (in module cellpose.transforms), 60

B
batchconvstyle (class in cellpose.resnet_torch), 79
boundary_scores() (in module cellpose.metrics), 53
builtin (cellpose.models.CellposeModel attribute), 41,

84

C
Cellpose (class in cellpose.models), 39, 82
cellpose.core

module, 80
cellpose.dynamics
module, 54

cellpose.io
module, 68

cellpose.metrics
module, 53

cellpose.models
module, 82

cellpose.plot
module, 66

cellpose.resnet_torch
module, 77

cellpose.train
module, 50

cellpose.transforms
module, 60

cellpose.utils
module, 72

CellposeDenoiseModel (class in cellpose.denoise), 44
CellposeModel (class in cellpose.models), 41, 84

check_mkl() (in module cellpose.core), 80
circleMask() (in module cellpose.utils), 72
compute_masks() (in module cellpose.dynamics), 54
concatenation (cellpose.resnet_torch.CPnet attribute),

78
conv_3D (cellpose.resnet_torch.CPnet attribute), 78
convert_image() (in module cellpose.transforms), 60
cp (cellpose.models.Cellpose attribute), 39, 82
cp (cellpose.models.SizeModel attribute), 48, 87
CPnet (class in cellpose.resnet_torch), 77

D
DenoiseModel (class in cellpose.denoise), 46
device (cellpose.models.Cellpose attribute), 39, 82
device (cellpose.models.CellposeModel attribute), 41,

84
device (cellpose.models.SizeModel attribute), 48, 87
device (cellpose.resnet_torch.CPnet property), 79
diam_labels (cellpose.models.CellposeModel at-

tribute), 42, 85
diam_labels (cellpose.resnet_torch.CPnet attribute), 79
diam_mean (cellpose.denoise.DenoiseModel attribute),

46
diam_mean (cellpose.models.Cellpose attribute), 39, 82
diam_mean (cellpose.models.CellposeModel attribute),

41, 84
diam_mean (cellpose.models.SizeModel attribute), 49, 87
diam_mean (cellpose.resnet_torch.CPnet attribute), 79
diameters() (in module cellpose.utils), 72
dilate_masks() (in module cellpose.utils), 73
disk() (in module cellpose.plot), 66
distance_to_boundary() (in module cellpose.utils),

73
download_url_to_file() (in module cellpose.utils),

73
downsample (cellpose.resnet_torch.CPnet attribute), 78
downsample (class in cellpose.resnet_torch), 79
dx_to_circ() (in module cellpose.plot), 66

E
eval() (cellpose.denoise.CellposeDenoiseModel

method), 44

99

cellpose, Release 3.0.7-19-g0ce3653

eval() (cellpose.denoise.DenoiseModel method), 47
eval() (cellpose.models.Cellpose method), 40, 83
eval() (cellpose.models.CellposeModel method), 42, 85
eval() (cellpose.models.SizeModel method), 49, 87

F
fill_holes_and_remove_small_masks() (in module

cellpose.utils), 73
flow_error() (in module cellpose.metrics), 54
flush() (cellpose.utils.TqdmToLogger method), 72
follow_flows() (in module cellpose.dynamics), 55
forward() (cellpose.resnet_torch.CPnet method), 79

G
gaussian_kernel() (in module cellpose.transforms),

61
get_centers() (in module cellpose.dynamics), 55
get_image_files() (in module cellpose.io), 68
get_label_files() (in module cellpose.io), 69
get_mask_compactness() (in module cellpose.utils),

74
get_mask_perimeters() (in module cellpose.utils), 74
get_mask_stats() (in module cellpose.utils), 74
get_masks() (in module cellpose.dynamics), 56
get_masks_unet() (in module cellpose.utils), 74
get_outline_multi() (in module cellpose.utils), 74
get_perimeter() (in module cellpose.utils), 75
gpu (cellpose.models.Cellpose attribute), 39, 82

I
image_to_rgb() (in module cellpose.plot), 67
imread() (in module cellpose.io), 69
imsave() (in module cellpose.io), 69
interesting_patch() (in module cellpose.plot), 67

L
labels_to_flows() (in module cellpose.dynamics), 56
load_images_labels() (in module cellpose.io), 69
load_model() (cellpose.resnet_torch.CPnet method), 79
load_train_test_data() (in module cellpose.io), 70

M
make_style (cellpose.resnet_torch.CPnet attribute), 78
make_style (class in cellpose.resnet_torch), 80
make_tiles() (in module cellpose.transforms), 61
map_coordinates() (in module cellpose.dynamics), 56
mask_ious() (in module cellpose.metrics), 54
mask_overlay() (in module cellpose.plot), 67
mask_rgb() (in module cellpose.plot), 67
masks_flows_to_seg() (in module cellpose.io), 70
masks_to_edges() (in module cellpose.utils), 75
masks_to_flows() (in module cellpose.dynamics), 57

masks_to_flows_cpu() (in module cellpose.dynamics),
57

masks_to_flows_gpu() (in module cellpose.dynamics),
57

masks_to_flows_gpu_3d() (in module cell-
pose.dynamics), 57

masks_to_outlines() (in module cellpose.utils), 75
mkldnn (cellpose.models.CellposeModel attribute), 41,

84
mkldnn (cellpose.resnet_torch.CPnet attribute), 78
module

cellpose.core, 80
cellpose.dynamics, 54
cellpose.io, 68
cellpose.metrics, 53
cellpose.models, 82
cellpose.plot, 66
cellpose.resnet_torch, 77
cellpose.train, 50
cellpose.transforms, 60
cellpose.utils, 72

move_axis() (in module cellpose.transforms), 61
move_min_dim() (in module cellpose.transforms), 61

N
nbase (cellpose.models.CellposeModel attribute), 41, 84
nbase (cellpose.resnet_torch.CPnet attribute), 77
nchan (cellpose.denoise.DenoiseModel attribute), 46
nchan (cellpose.models.CellposeModel attribute), 41, 84
nclasses (cellpose.models.CellposeModel attribute), 41,

84
net (cellpose.denoise.DenoiseModel attribute), 46
net (cellpose.models.CellposeModel attribute), 41, 84
net_chan2 (cellpose.denoise.DenoiseModel attribute),

47
net_type (cellpose.denoise.DenoiseModel attribute), 47
net_type (cellpose.models.CellposeModel attribute), 42,

85
normalize99() (in module cellpose.transforms), 62
normalize99_tile() (in module cellpose.transforms),

62
normalize_img() (in module cellpose.transforms), 62
nout (cellpose.resnet_torch.CPnet attribute), 78

O
outline_view() (in module cellpose.plot), 67
outlines_list() (in module cellpose.utils), 75
outlines_list_multi() (in module cellpose.utils), 76
outlines_list_single() (in module cellpose.utils),

76
output (cellpose.resnet_torch.CPnet attribute), 79

P
pad_image_ND() (in module cellpose.transforms), 63

100 Index

cellpose, Release 3.0.7-19-g0ce3653

pretrained_model (cellpose.denoise.DenoiseModel at-
tribute), 47

pretrained_model (cellpose.models.CellposeModel at-
tribute), 41, 84

pretrained_size (cellpose.models.Cellpose attribute),
39, 82

pretrained_size (cellpose.models.SizeModel at-
tribute), 48, 87

R
radius_distribution() (in module cellpose.utils), 76
random_rotate_and_resize() (in module cell-

pose.transforms), 63
remove_bad_flow_masks() (in module cell-

pose.dynamics), 58
remove_edge_masks() (in module cellpose.utils), 76
remove_model() (in module cellpose.io), 71
resdown (class in cellpose.resnet_torch), 80
reshape() (in module cellpose.transforms), 64
residual_on (cellpose.resnet_torch.CPnet attribute), 78
resize_and_compute_masks() (in module cell-

pose.dynamics), 58
resize_image() (in module cellpose.transforms), 64
resup (class in cellpose.resnet_torch), 80
run_3D() (in module cellpose.core), 80
run_net() (in module cellpose.core), 81

S
save_masks() (in module cellpose.io), 71
save_model() (cellpose.resnet_torch.CPnet method), 79
save_rois() (in module cellpose.io), 72
save_to_png() (in module cellpose.io), 72
show_segmentation() (in module cellpose.plot), 68
size_distribution() (in module cellpose.utils), 77
SizeModel (class in cellpose.models), 48, 87
smooth_sharpen_img() (in module cell-

pose.transforms), 65
steps2D() (in module cellpose.dynamics), 59
steps2D_interp() (in module cellpose.dynamics), 59
steps3D() (in module cellpose.dynamics), 59
stitch3D() (in module cellpose.utils), 77
style_on (cellpose.resnet_torch.CPnet attribute), 78
sz (cellpose.models.Cellpose attribute), 40, 83
sz (cellpose.resnet_torch.CPnet attribute), 78

T
TqdmToLogger (class in cellpose.utils), 72
train_seg() (in module cellpose.train), 50
train_size() (in module cellpose.train), 52

U
unaugment_tiles() (in module cellpose.transforms),

65

update_axis() (in module cellpose.transforms), 66
upsample (cellpose.resnet_torch.CPnet attribute), 78
upsample (class in cellpose.resnet_torch), 80
use_gpu() (in module cellpose.core), 81

W
write() (cellpose.utils.TqdmToLogger method), 72

Index 101

	Installation
	Built-in model directory
	M1 Mac installation
	AMD GPU ROCm installation
	Common issues
	Dependencies

	GUI
	Starting the GUI
	Using the GUI
	Drawing masks
	Bulk Mask Deletion
	Segmentation options
	Training your own cellpose model
	Contributing training data
	Keyboard shortcuts

	Inputs
	3D segmentation

	Settings
	Channels
	Diameter
	Resample
	Flow threshold
	Cellprob threshold
	Number of iterations niter
	3D settings

	Outputs
	in a notebook
	_seg.npy output
	PNG output
	Native ImageJ ROI archive output
	(Legacy ImageJ Interface) ROI manager compatible output for ImageJ
	Plotting functions

	Models
	Full built-in models
	Cytoplasm model ('cyto3', 'cyto2', 'cyto')
	Nucleus model (‘nuclei’)

	Other built-in models
	User-trained models

	Image Restoration
	DenoiseModel
	CellposeDenoiseModel
	Command line usage

	Training
	OpenVINO
	FAQ
	In a notebook
	Command line
	Command Line Usage

	Cellpose API Guide
	Cellpose class
	CellposeModel
	CellposeDenoiseModel
	DenoiseModel
	SizeModel
	Training
	Metrics
	Flows to masks
	Image transforms
	Plot functions
	I/O functions
	Utils functions
	Network classes
	Core functions
	All models functions

	Cellpose CLI
	Command Line Usage
	Named Arguments
	Hardware Arguments
	Input Image Arguments
	Model Arguments
	Algorithm Arguments
	Output Arguments
	Training Arguments

	Python Module Index
	Index

